From the Core to the Cosmos

Surface & Hydrologic Processes

From watersheds and aquifers to source-to-sink sediment transport and land surface dynamics, our research focuses on processes that shape the Earth's surface, the rock record results, and interaction with hydrologic systems.

Research in the Surface & Hydrologic Processes theme focuses on the following subthemes:

Surface & Hydrologic Processes News

More News

Faculty & Research Scientists

William A AmbroseWilliam A Ambrose
Sedimentology, subsurface mapping of clastic depositional systems, oil and gas production analysis, coalbed methane
David K ArcturDavid K Arctur
Geographic Information Systems and Database Management Systems, with focus of interest in standards for interoperability of data and models for multidisciplinary geosciences research (water resources, climate, and geohazards in particular). Data and model semantics, and digital preservation of physical samples are crosscutting subthemes of interest.
James A AustinJames A Austin
Stratigraphic evolution of a wide range of marine and lacustrine environments around the world
Jay L BannerJay L Banner
Isotopic methods, groundwater, oceans, ancient oceans, climate change, aquifers, caves, environmental science, geochemistry, paleoclimatology
Whitney  BehrWhitney Behr
Mechanics and kinematics of deformation in continental lithosphere, rheology of the crust and upper mantle, mechanisms of strain localization, experimental rock mechanics, tectonic geomorphology and long term slip rates and hazard on large-scale strike-slip faults.
Philip C BennettPhilip C Bennett
Aqueous geochemistry, geomicrobiology, environmental and microbial geochemistry, hydrogeology
Todd  CaldwellTodd Caldwell
Dr. Caldwell's research focuses on field investigations and modeling of soil and vadose zone processes across multiple scales and environments. He is principle investigator for the Texas Soil Observation Network, a core calibration and validation site for the NASA Soil Moisture Active Passive Satellite Mission.
M Bayani CardenasM Bayani Cardenas
Hydrology and Hydrogeology
Ginny CataniaGinny Catania
Ice sheet mass balance, ice dynamics, subglacial hydrology, ice sheet stratigraphy, radar, GPS methods, uncertainty in ice sheet response to climate.
Jacob A CovaultJacob A Covault
sedimentology, stratigraphy, marine geology
Robert E DickinsonRobert E Dickinson
Climate, Global Warming, Land Surface Processes, Remote Sensing, Hydrological Cycle, Carbon Cycle, and Modeling.
Ian J DuncanIan J Duncan
Expertise in geomechanic and geochemistry applied to: risks associated with CO2 sequestration; hydraulic fracturing for shale gas production; environmental impact of hydraulic fracturing; and the water-energy nexus. Current research focuses on the scientific, environmental and public policy aspects of unconventional natural gas production, the water-energy nexus, and carbon capture and storage. He has a particular interest in risk analysis, decision making, and legal/regulatory issues related to fracing, CO2 sequestration, CO2-EOR, and energy production.
Andras  FallAndras Fall
Fluids in diagenetic and hydrothermal systems, Fluid inclusions, Fractures, Structural diagenesis
William L FisherWilliam L Fisher
Basin analysis, sequence stratigraphy, depositional systems, petroleum geology, resource assessment, energy policy
Peter P FlaigPeter P Flaig
Research Focus: Cretaceous Western Interior Seaway of North America, North Slope-Alaska, Central Transantarctic Mountains-Antarctica, Canada,- Clastic sedimentology - Fluvial sedimentology - Paleoenvironmental reconstruction of continental to shallow-marine systems using sedimentology, stratigraphy, architecture, and ichnology in outcrop studies - Photography and high-resolution imagery (e.g. LiDAR, GigaPan) of clastic systems - Paleopedology - Remote logistics.
Peter B FlemingsPeter B Flemings
Stratigraphy, basin analysis, basin-scale fluid flow, pore pressures in seafloor sediments, submarine landslides, oil and gas migration, methane hydrates, Integrated Ocean Drilling Program (IODP)
Craig S FulthorpeCraig S Fulthorpe
Marine geology, sedimentary geology, seismic stratigraphy and sedimentary architecture of continental margins, sequence stratigraphy and sea-level variation.
James E GardnerJames E Gardner
Volcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies
Omar  GhattasOmar Ghattas
Computational geoscience and engineering, simulation and optimization of complex solid, fluid, and biomechanical systems, inverse problems, optimal design, and optimal control
John A GoffJohn A Goff
Seafloor morphology and bathymetry, swath sonar mapping, stratigraphy of the shallow seabed, ultra-high resolution seismic reflection (chrip) systems, sedimentary horizons, sea ice draft, crustal heterogeneity, canyon morphology on continental slopes, abyssal hills
Cyril Grima
Sean S GulickSean S Gulick
Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events Marine geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and submersibles
Jack HoltJack Holt
Mars ice and paleoclimate, Alaskan glaciers, airborne and orbital geophysics, hydrogeophysics, paleomagnetism. See Jack's UTIG webpage:
Brian K HortonBrian K Horton
Tectonics of sedimentary basins, evolution of orogenic systems, sediment provenance and routing systems, nonmarine depositional processes.
Seyyed Abolfazl HosseiniSeyyed Abolfazl Hosseini
Research interests are mainly topics related to fluid transport in porous media. Current research includes: Enhanced Oil Recovery - Enhanced Gas Recovery - Upscaling and Upgridding - Above Zone Monitoring Interval - Reservoir Simulation and History Matching - Unconventional Reservoirs
Xavier  JansonXavier Janson
Carbonates sedimentology and sequence stratigraphy, petrophysics of carbonate, seismic signature of carbonate rock, seismic modeling, carbonate modern depositional environment
Joel P JohnsonJoel P Johnson
Process geomorphology, feedbacks between channel morphology and hydrology and sediment transport, landscape sensitivity to climate and lithology, bedrock river erosion, flash floods, arroyo erosion, canyon formation, debris flows, environmental monitoring and sensor networks, laboratory flume experimentation, numerical modeling, tsunami sediment transport and deposition.
Wonsuck  KimWonsuck Kim
Quantitative stratigraphy, Shoreline dynamics, Morphodynamcis, Sediment transport, Deltaic sedimentation, River delta restoration, Coupled mathematical modeling and experimental stratigraphy, Planetary surface processes.
Gary A KocurekGary A Kocurek
Sedimentology, geomorphology and stratigraphy of aeolian systems; fluid flow and grain transport; bedform dynamics and pattern evolution of dune fields; the stratigraphic record of aeolian and related systems on Earth and Mars.
Stephen E LaubachStephen E Laubach
Structural diagenesis, structural geology, fracture analysis, fluid inclusion and cathodoluminescence studies, rock mechanics, mechanical and fracture stratigraphy, hydrocarbon exploration and development in deep and/or structurally complex areas, tight gas sandstone, coalbed methane, shale gas; geologic aspects of hydraulic fracturing, application of borehole-imaging geophysical logs to stress and fracture evaluation, structural evolution of North American Cordillera, fracture history of NW Scotland, regional fracture studies Argentina.
Luc L LavierLuc L Lavier
Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Joe LevyJoe Levy
Permafrost, Antarctica, Planetary geology, Mars, Geomorphology, Remote Sensing, GIS
Robert G LoucksRobert G Loucks
Research in carbonate, sandstone, and mudrock stratigraphy, sedimentology, diagenesis, reservoir characterization, and pore network analysis.
Rowan C MartindaleRowan C Martindale
Triassic and Jurassic reef paleoecology, mass extinctions (Triassic-Jurassic, 201 Ma), carbon cycle perturbation events in deep time, ocean acidification in deep time, Oceanic Anoxic Events, invertebrate paleontology (corals, sponges, algae, microbes), Mesozoic marine communities and ecosystems, exceptional fossil preservation (Lagersttten), paleoecology, carbonate petrography, warm-water and cool-water carbonate (eco)systems, low-temperature geochemistry.
Kitty L MillikenKitty L Milliken
Petrography and geochemistry of siliciclastic rocks; diagenesis; electron microbeam methods: X-ray mapping, cathodoluminescence imaging; micro-scale reservoir characterization
David  MohrigDavid Mohrig (Theme Lead)
Sedimentary Geology, Sedimentology, Stratigraphy, Geomorphology, Rivers, Deltas, Coastlines, Submarine Channels, Geohazards, Sediment-Gravity Currents, Sediment Transport, Seismic Interpretation, Basin Analysis
Jean-Philippe NicotJean-Philippe Nicot
Subsurface hydrology, numerical modeling and optimization of groundwater resources, multiphase flow and contaminant transport in both the unsaturated and saturated zones, geochemistry modeling and subsurface reactive transport, Mathematical geology, geostatistics, inverse modeling, optimization, risk assessment and risk analysis
Maria-Aikaterini  NikolinakouMaria-Aikaterini Nikolinakou
Maria-Katerina Nikolinakou is currently a Research Associate at the Bureau of Economic Geology, Jackson School of Geosciences, at the University of Texas at Austin. She works for the AGL and GeoFluids consortia. Maria is a Civil/Geotechnical Engineer. She received her Science Doctorate on Theoretical Soil Mechanics from MIT in 2008. She holds a M.Sc. in Geotechnical Engineering from MIT and a Civil Engineering degree from NTUA, Greece. Before joining the Jackson School, she worked ...
Cornel  OlariuCornel Olariu
Clastic Sedimentology, Stratigraphy, Depositional Environments, Basin Analysis
Jeffrey G PaineJeffrey G Paine
Near-surface geophysics in hydrogeology and environmental and Quaternary geology; coastal geology; Quaternary geology and geomorphology; computer applications in the geological sciences
Suzanne A PierceSuzanne A Pierce
Integrated Water Resources Management Decision Support Systems Sustainability Science Energy-Water Groundwater Management Participatory Modeling
Mary F Poteet
karst ecosystems, biotic response and vulnerability to climate change, invasive species
Eric Prokocki
Open channel hydraulics and morphodynamics, Fluvial geomorphology/sedimentology, Estuarine/Deltaic hydraulics and sedimentology, and Turbidity currents
Daniella M RempeDaniella M Rempe
Hydrology, Geomorphology, Ecohydrology, Catchment Hydrology, Near-surface Geophysics, Hydrogeology
Katherine D RomanakKatherine D Romanak
Geochemistry and isotope systematics of carbon cycling in the vadose zone and in freshwater aquifers; soil-gas monitoring and surface gas flux measurements at CO2 sequestration sites; microbial influences on carbon geochemistry in the shallow subsurface; fate and transport of organic contaminants.
Timothy B RoweTimothy B Rowe
Vertebrate paleontology, evolution and development of the vertebrate skeleton, phylogenetic systematics, the early history of mammals and their extinct relatives among Synapsida, the history of birds and their extinct relatives among Dinosauria, the history of other amniotes, high-resolution X-ray computed tomography, CT scanner, DigiMorph, informatics
Stephen C RuppelStephen C Ruppel
Mudrock systems sedimentology, stratigraphy, and rock attributes; Paleozoic depositional systems and basin analysis; carbonate reservoir characterization; conodont biostratigraphy and 87Sr/86Sr chemostratigraphy, carbonate sedimentology and geochemistry
Bridget R ScanlonBridget R Scanlon
Evaluation of the impact of climate variability and land use change on groundwater recharge, application of numerical models for simulating variably saturated flow and transport, controls on nitrate contamination in aquifers
Timothy M ShanahanTimothy M Shanahan
Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific stable isotope analysis
John M SharpJohn M Sharp
Hyrdogeology; flow in fractured rocks; thermohaline free convection; fracture skin effects; regional flow in carbonate rocks; hydrology of arid and semi-arid zones; subsidence and coastal land loss; effects of urbanization; alluvial aquifers; hydrogeology of sedimentary basins;hydrological processes in ore deposit formation; and hydrogeophysics.
John W SneddenJohn W Snedden
Sequence Stratigraphy, Sedimentology, Reservoir Development and Connectivity, Petroleum Geoscience
Krista M SoderlundKrista M Soderlund
Astrobiology, Cryosphere, Geophysical Fluid Dynamics, Magnetohydrodynamics, Planetary Science
Daniel  StockliDaniel Stockli
Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Alex  SunAlex Sun
Subjects: Carbon sequestration, hydrological modeling, computational geoscience, fracture/fault modeling Skill sets: Geostatistical modeling, inversion and optimization algorithms, numerical modeling, web-based decision support systems Programming: Matlab, Python, Fortran, C, ArcGIS
Frederick W TaylorFrederick W Taylor
Tectonic geomorphology, stratigraphy, and paleogeodesy/paleoseismology at convergent plate margins Paleoclimate, fossil corals as a proxy for past sea-surface temperatures. Corals as recorders of relative sea level for vertical tectonics and sea-level history.
Matthew M UlianaMatthew M Uliana
Water resources, low-temperature aqueous geochemistry, groundwater modeling
Jake WalterJake Walter
ice sheet and glacier dynamics, tectonic tremor and slow slip, earthquakes, induced seismicity, seismic triggering of earthquakes and other phenomena
Clark R WilsonClark R Wilson
Geophysics, including gravity, space geodesy, and applied seismology
Brad WolaverBrad Wolaver
Zong-Liang  YangZong-Liang Yang
Dr. Yang's primary research interest is to understand the exchanges of momentum, radiation, heat, water, carbon dioxide, and other materials between the atmosphere and the Earth surface spanning from small (short) to very large (long) scales. This includes analysis of in-situ and remotely-sensed data for the Earth's surface, and modeling studies of weather, climate and hydrology at local, regional and global scales.
Kehua  YouKehua You
Fluid Flow and Transport Through Porous Media Parameter Optimization Finite Element and Finite Difference Modeling Analytical Modeling
Michael H YoungMichael H Young
Ecohydrology of arid and semiarid landscapes; groundwater recharge in both managed agriculture and natural (arid and semi-arid) systems; influence of soil structure and vegetation on water cycling; design and implementation of monitoring systems for above-ground and near-surface below ground environments.
Duncan A YoungDuncan A Young
Ice-rock physical interactions in an ice cap context, tectonic evolution of the younger planetary crusts

Postdoctoral Researchers

George B FisherGeorge B Fisher
Tectonic and Fluvial Geomorphology, Cosmogenic and Fallout Radionuclides, Remote Sensing, Spatial Analyses
Timothy A GoudgeTimothy A Goudge
Remote sensing; reflectance spectroscopy; geomorphology; surface processes; martian surface geology; planetary science.

Adjunct/Emeritus Faculty​ & Research Scientists

Rong  FuRong Fu
Convection, cloud and precipitation processes and their role in climate; Atmospheric transport in the upper troposphere and lower stratosphere; Atmosphere, ocean and land/vegetation interactions; Satellite remote sensing applications and retrievals;
Marcus GaryMarcus Gary
Karst Hydrogeology
Joe LevyJoe Levy
Permafrost, Antarctica, Planetary geology, Mars, Geomorphology, Remote Sensing, GIS
Lorena G MoscardelliLorena G Moscardelli
James T SprinkleJames T Sprinkle
Invertebrate paleontology; evolutionary biology; fossil and living echinoderms; echinoderm systematics; Paleozoic marine communities and ecosystems; paleoecology; crinoids; blastoids; rhombiferans; eocrinoids; parablastoids; blastozoans; edrioasteroids; edrioblastoids; starfish; stylophorans; ctenocystoids; helicoplacoids; Cambrian evolutionary fauna; Paleozoic evolutionary fauna; Ordovician radiation; Cambrian explosion; environment & earth science

Research Staff

Damayanti A BanerjiDamayanti A Banerji
Stratigraphy, Aquifer / Reservoir Characterization, Water / Energy Resource Evaluation, Petroleum geology
Edward W CollinsEdward W Collins
geologic mapping; environmental geology
Kathy EllinsKathy Ellins
Geoscience education; Discipline Based Education Research (DBER); teacher professional development; geoscience curriculum development; undergraduate geoscience teacher preparation; climate literacy; geoscience, art and design engagement
Rodrigo A Fernandez-VasquezRodrigo A Fernandez-Vasquez
Glacial geology, marine geology, tectonics, tectonics-climate-glacial interactions, sedimentary processes on fjords, rivers and coastal environments, paleomagnetism (block rotations, anisotropy of susceptibility). Current Spatial/Temporal areas of research: Cz/Pleistocene-Holocene of Patagonia and the Antarctic Peninsula.
Tucker F HentzTucker F Hentz
Siliciclastic sequence stratigraphy, sandstone petrology, continental depositional systems, field mapping and stratigraphy
Nathaniel R MillerNathaniel R Miller
Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate
Lorena G MoscardelliLorena G Moscardelli
Jiangfeng  WeiJiangfeng Wei
Land-atmosphere interactions, hydrology, water cycle

Graduate Students

Khushboo Arora
The main purpose of my current research is to study the influence of long-period surface gravity waves on sediment transport and deposition of hummocky cross-stratified deposits on marine shelves. An integrated study of paleo-hydraulic analysis and reservoir architecture of hummocky cross-stratified sands is critical for achieving a greater understanding of shelf sands deposited in shoreface and deeper settings. An improved understanding of how these sands and muds distribute themselves in the shelf settings with varying ...
Kevin M BefusKevin M Befus
Kevin is studying hydrology for two reasons: its demand scientifically and its relevance globally. Kevin uses a combination of fieldwork and numerical modelling studies to explore groundwater quantity and quality at various scales. Currently, Kevin is investigating groundwater residence times in aquifers from process-based and sustainability-oriented perspectives. Kevin has studied coastal groundwater-surface water interactions both in lake and beach settings. His previous research includes studying the effects of glacial isostasy on paleo-lake hydrology and applying ...
Amanda Z CalleAmanda Z Calle
My research is focused on the Cenozoic sedimentary, structural and exhumational history of the Eastern Cordillera to modern Chaco foreland basin in southern Bolivia. A multidisciplinary approach of source-to-sink, geochronology, low-temperature thermochronology and structural mapping will be used. Inherited pre-Andean structures and their response to contractional settings will also be evaluated to decipher the Cenozoic evolution of this part of the Central Andes.
Tomas N CapaldiTomas N Capaldi
I am a third year PhD student, focusing on Cenozoic to modern tectonic evolution of the flat-slab region in western Argentina. I study modern river networks using zircon U-Pb chronology to assess what factors are represented by sand provenance, such as: drainage area, variable erodibility, and zircon fertility of different source rocks. I use the modern river provenance as a baseline to reconstruct Cenozoic paleo-drainages during Andean mountain building and to differentiate the timing of ...
Benjamin T CardenasBenjamin T Cardenas
sedimentary geology stratigraphy fluvial and aeolian processes Mars
Peter E CarlsonPeter E Carlson
Stalagmites that grow near the entrances of caves are often avoided for the purposes of paleoclimate reconstruction, due to worries about fluctuating atmospheric conditions and microbiological influences interfering with calcite growth dynamics. I study how these near-entrance stalagmites might serve as high-resolution records of surface temperature. I am investigating temperatures recorded in the oxygen-isotope, trace element, and clumped-isotope compositions of a near-entrance stalagmite from Westcave Preserve in central Texas. I have also been monitoring active ...
Kristopher N DarnellKristopher N Darnell
I am interested in the fluid dynamics of surface and crustal processes. My research combines observational data with computational methods to understand how well theory predicts natural systems. I previously worked on Glaciology and contributed to various projects on supraglacial hydrology and iceberg dynamics. I'm currently working on gas hydrates. My project focuses on multiphase flow and its application to climate and production within hydrate reservoirs.
Mackenzie D DayMackenzie D Day
Covering a broad range of topics under the thesis title [italic] Sedimentary Dynamics of Aeolian Systems on Earth and Mars [/italic], Mackenzie Day's research includes inter-planetary comparison of dunes, analysis of aeolian features on the surface of Mars, and the physics of aeolian bedform formation. Currently Mackenzie is in her fourth year of graduate school and plans to leave UT in May of 2017. She has been a member of the Mars Science Laboratory (MSL) science ...
Stephen B Ferencz
Reynaldy  FifarizReynaldy Fifariz
Carbonate Sedimentology & Sequence Stratigraphy, Seismic Geomorphology, Geo-cellular Modelling.
Yuqian(Philomena) Gan
I have broad interests in sedimentology and stratigraphy with focus on: Slope channel architecture and evolution Sediment density flow processes and deposits Sequence stratigraphy of medium depth (200-500m) back-arc and foreland systems
Baiyuan  GaoBaiyuan Gao
Baiyuan is currently applying geomechanical models to study thin-skinned fold and thrust belts system. The research will further our understanding of stress, strain and compaction behaviors in fold-and-thrust belts. Baiyuan also aims to comp up with an improved approach to predict pore pressure in compressional regions.
Sarah  GeorgeSarah George
My research focuses on elucidating the timing and mechanisms of shortening, exhumation, and basin evolution in the Eastern Cordillera of northern Peru and Ecuador. By integrating U-Pb geochronology and measured sections from Cenozoic hinterland basins with (U-Th)/He thermochronology and mapping on uplifted Mesozoic and basement units, I will provide a detailed chronology of the uplifts that link the Northern and Central Andes.
Peter O Gold
Two primary goals motive my dissertation research. The first is to measure rates of slip and earthquake recurrence on faults within the southern San Andreas Fault system in southern California and northern Baja California, Mexico. The value of these measurements is both academic and practical determining how slip is partitioned between multiple parallel or overlapping faults is critical for understanding strain accommodation though complex fault systems, which is in turn necessary for making well informed ...
Eric J Guiltinan
Hima J Hassenruck-GudipatiHima J Hassenruck-Gudipati
[bold] Research Interest[/bold]: geomorphology, sedimentology, hydrology
Allan E Jones
Eunsil Jung
Matthew  KaufmanMatthew Kaufman
Matt studies fundamental questions about the physical, chemical, and biological processes which work together to control all aspects of groundwater and surface water. In particular, he is interested in the the dynamic processes present at the interfaces between groundwater and surface water.
Woong Mo  KooWoong Mo Koo
My current research interests focus on depositional processes in subaqueous transitional flows and their resultant sedimentary characteristics.
Lingcheng LiLingcheng Li
I am interested in the carbon-water cycling of different ecosystems.
Yejin Lim
Jasmine  MasonJasmine Mason
fluvial geomorphology, sediment transport, coastal rivers, bed forms, bar forms, backwater zone, deltas
Kimberly A McCormackKimberly A McCormack
My research focuses on the feedback between seismicity and pore fluid in tectonic and fluid injection settings
Colin J McNeeceColin J McNeece
I am a Ph.D. candidate in geological sciences at UT Austin. My research is in reactive transport modeling, a field that sits on the interface of fluid mechanics and geochemistry. My work couples theory and experiments to understand fundamental controls on transport behavior in natural settings.
Michael T O'connorMichael T O'connor
I am most interested in the hydrologic and biogeochemical processes occurring at and near the surface of the Earth. I use field and laboratory techniques as well as numerical modeling to understand and represent these complex systems. My current research focuses on the variably saturated flow and nutrient transport dynamics of Arctic permafrost systems. I hope to use this work to help describe the mechanisms for terrestrial Arctic carbon export. I am also very interested ...
Eric I Petersen
Eric Petersen is a PhD student working on Martian lobate debris aprons (LDAs), strange landforms interpreted as massive debris-covered glacier systems. As remnants of past obliquity-driven glacial cycles on Mars, these features are valuable indicators of Amazonian palaeoclimate. Eric's work involves using SHARAD orbital radar sounding data in conjunction with ice flow modeling and geomorphic analysis to provide constraints on LDA formation and history. He is also interested in geophysical studies of debris-covered glaciers and ...
Kealie PretzlavKealie Pretzlav
Research Interests: Fluvial Geomorphology, Sediment Transport, Flash Floods, Laboratory Experiments, Ephemeral Channels, Bed Surface Armoring Dissertation: Flash Floods and Unsteady Flows: Sediment Transport, Turbulence, and Bed Surface Armoring (working title) Committee: Joel Johnson, David Mohrig, Wonsuck Kim, Paola Passolaqua, Johnathan Laronne
Edgardo J PujolsEdgardo J Pujols
My main expertise and research centers on quantifying the temporal aspects and interplay between hinterland deformation and basin evolution. For the past years (both my M.S. and Ph.D. thesis research), my studies have focus on the intricate dynamic processes linking basin evolution and large-scale tectonics combining conventional field techniques and extensive laboratory work. My M.S. research at the University of Kansas investigated the timing and linkages of normal faulting and its influence ...
Evan J RamosEvan J Ramos
I am a first-year PhD student whose research focuses the thermodynamics of mass and heat transfer during fluid-rock interactions and the geochemical and petrologic records associated with these processes. My Master's thesis incorporated various techniques including numerical modeling, stable isotope geochemistry, and geochronology to understand the nature of fluid flow during the formation of a Sierran skarn. The overarching goal of this research was to quantify the amount and rate of CO2 production during metamorphic ...
Juliana  SpectorJuliana Spector
Fluvial geomorphology, chemical weathering, aqueous geochemistry
John M SwartzJohn M Swartz
Research interests: Sedimentology/stratigraphy, coastal and nearshore processes, quantitative geomorphology, marine geophysics, statistical methods in geoscience
Alison TuneAlison Tune
Anna TuretcaiaAnna Turetcaia
Janaki  VamarajuJanaki Vamaraju
Inverse theory , Wave Propagation , High performance Computing , Fracture Modelling
Lichun Wang
Fluid flow, solute transport and reactive transport through fractures
Emery Wolf
Innovative Detrital Provenance Studies - Double Dating PLUS (Graduate)
A major thrust of my current research the development and application of more comprehensive isotopic detrital provenance tools. U-Pb on zircon is clearly the big work horse, but only goes so far and sometimes yields "no" useful info, e.g., if the source of the sediment is mostly recycled sediment. We have extensively pursued double dating of zircons by U-Pb and He, as zircon He ages yield very interesting insights into the thermal and tectonic history of the source terrane; often yielding very different insights than crystallization ages. The combination is powerful, but I think we can take things so much farther by combining double dating with other constrains. People have tried fission track (not precise enough), Hf/Hf (to get mantle separation model ages), etc., but what we want to do and are working on is really Double Dating ++, combining zircon U-Pb-He dating with a variety of other geochemical aspects to more comprehensive understand detrital provenance and improve paleo-tectonic reconstructions. For example, trace-element thermometry (Ti in zirc), REE on zircon (met vs mag origin), Hf/Hf (see above), oxygen isotopes, etc. and also to develop rutile in an analogous manner (e.g., Zr in rut thermometry, Cr/Nb ratio (mafic vs granulitic), REE, etc.). The sky is the limit and what can learn so much. The issue in part it, how much can a single grain tell us before it's gone? The project sounds very laboratory oriented, but it's really a combination of field and lab work. We have identified a few possible case study areas, e.g., Morocco; great exposures, long-lived and preserved record of basin deposition since the Precambrian. My group is already working on some case studies in NW Himalayas, the N & S Pyrenees, the Sevier FTB, Permian Basin and other foreland basin. New projects include provenance studies along rifted and passive continental margins such the Gulf of Mexico, the central Atlantic Margins in Canada, USA, Portugal, and Morocco.
Posted by: Daniel Stockli
PhD Student (Graduate)
I am accepting applications for a new PhD Student in my lab. This student must be interested in paleontological or carbonate sedimentology research (both would be best), and should be aware of the current/recent projects in the Martindale Lab. Exceptional MSc students will be considered, but preference is for a doctoral student (prior research experience at the undergraduate or MSc level is desired).
Posted by: Rowan Martindale
Prospective Students (Graduate or Undergraduate)
Thank you for your interest in joining my research group! There are currently opportunities at all levels beginning in the Fall of 2016. I welcome the opportunity to work with students who have a strong academic record, quantitative skills, research and writing experience, and unquenchable curiosity and creativity. Our group focuses on spatial and temporal patterns of water movement in the near surface. If you're interested in joining the lab, please contact me directly ( with a CV and a statement of your research experience and interests.
Posted by: Daniella Rempe
Detrital Geo- and Thermochronometry of Atlantic Rift Basins (Graduate)
Seeking motivated Ph.D. students interested in conducting integrated detrital zircon U-Pb and (U-Th)/He work on Triassic and Jurassic rift basins along the Atlantic margin in the NE USA and Canada and the conjugate margin of Morocco. The goal of the project is to understand basin sedimentation, sediment routing, and sediment provenance to shed light on lithospheric rift processes leading to Atlantic rifting and break-up. This project will combine stratigraphy, detrital geo-thermochronometry, and geodynamics to more holistically understand 2D and 3D sediment dispersal and lithospheric-scale controls on sediment dispersal and stratigraphic record during progressive rifting through time.
Posted by: Daniel Stockli
PhD Candidate (Graduate)
Research on Gulf of Mexico sedimentary systems and sequence stratigraphy; Source to sink analysis.
Posted by: John Snedden
Masters Candidate (Graduate)
Research on Gulf of Mexico, using industry seismic and well data
Posted by: John Snedden
National Science Foundation-International Research Experiences for Students (Graduate or Undergraduate - Summer 2017 and Fall 2018)
The National Science Foundation has awarded an International Research Experiences for Students (IRES) program to provide four weeks of geological field-based research and training experiences across Slovakia for undergraduate and graduate students. These students will investigate geological processes that occurred in Slovakia due to the closure of branches of ancient ocean basins. Because of its extensive exposures of ancient ocean suture zones and crustal fragments, Slovakia is an ideal location to study how continents grow.
Posted by: Elizabeth Catlos
Aerogeophysical DataAerogeophysical Data
The Institute for Geophysics shares data from a range of aerogephysical missions flown over Antarctica.

Aerogeophysical SystemsAerogeophysical Systems
UTIG has developed, maintained, and operated a suite of aerogeophysical instrumentation since the early 1990s with continual improvements since inception. The suite was installed aboard a Dehavilland DHC-6 ("Twin Otter") up to 2005 and aboard a Basler BT-67 (a version of DC-3T -- a Douglas DC-3 refitted with turboprop engines) since 2008. The current instruments are: High Capability Radar Sounder (HiCARS); Multibeam, Scanning Photon Counting Lidar; Cesium Vapor Magnetometer; Gravimeter; Dual-frequency, carrier-phase Global Navigation Satellite Systems (GNSS); Laser Altimeter; Two GPS-aided Inertial Measurement Units; Three-Axis Fluxgate Magnetometer; System Control, Data Acquisition, and Real-time QC and Monitoring functions.

Airborne Optech LIDAR SystemAirborne Optech LIDAR System
For fine-scale topographic mapping

Aqueous Geochemistry Lab
Characterizes the chemical properties of water and solids to support research in hydrogeology, geochemistry, and geomicrobiology. Equipment used: carbon analyzer (TC), Organic analysis Field and laboratory gas chromatographs, thermal desorber, high pressure liquid chromatographs, Inorganic analyses Ion chromatograph, autotitrator, field and lab spectrophotometers. BET sorptometer for N2, Ar, and Kr BET surface areas, and A microporosities, organic carbon analyzer.

Core Research Center (Austin)Core Research Center (Austin)
The Austin Core Research Center (CRC), located adjacent to Bureau headquarters, is the Bureau of Economic Geology's main core repository for core and rock material donated to the university. More than 500,000 boxes of core and cuttings from wells drilled throughout Texas, the U.S., and the world are available at this facility for public viewing and research. Austin, Houston, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. The Integrated Core and Log Database (IGOR) is a searchable database for all CRC core and well cutting holdings. Public facilities include core examination layout rooms and processing rooms for slabbing core. Other services are available upon request.

Core Research Center (Houston)Core Research Center (Houston)
The Houston Research Center (HRC), is located on the west side of Houston, Texas, six miles north of I-10 and two miles south of U.S. Highway 290. This state-of-the-art climate-controlled facility is equipped to permanently store and curate over 900,000 boxes of geologic core and cuttings. The Houston, Austin, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. In addition to the climate-controlled core and cuttings warehouse, the HRC complex has offices, laboratories, and a well-lit core layout room available for visiting scientists. There are also two conference rooms to accommodate guests attending short courses and seminars. Other services are available upon request. Nominal fees are charged to rent table space and to view core. The HRC has space dedicated for storing samples and cores acquired by NSF-funded research. The HRC curates this material and facilitates continued access to the material by researchers. The Integrated Core and Log Database (IGOR) is a searchable database for all core and well cutting holdings.

Dual-frequency Geodetic Quality GPS ReceiversDual-frequency Geodetic Quality GPS Receivers
We have 5 Trimble Net-RS receivers, tripods, choke ring antennas. One is with Tiffany Caudle at BEG used to support the Optech Lidar system. The other 4 are in JGB 3.122 and used by various groups.

Electron MicroprobeElectron Microprobe
Installed in 2002-2003, the JEOL JXA-8200 electron probe microanalyzer (EPMA) is equipped with five wavelength dispersive spectrometers (WDS), an energy dispersive detector (EDS), and two image detectors in secondary and backscattered electron modes. The primary aim of the microprobe is quantitative elemental analysis of minerals on a microscale with high precision (less than a percent relative for major constituents) and low detection limits (commonly a few tens to few hundreds ppm)

Flash Flood & Tsunami FlumeFlash Flood & Tsunami Flume
The Flash Flood and Tsunami flume is a large (approximately 40 x 1.5 x 0.8 m) outdoor flume with a computer-controlled headbox lift gate that generates reproducible flood bores. It is being used to study the hydraulics and sediment transport of rapidly changing hydrographs.

Gas Chromatography Mass Spectrometry Laboratory
Geophysical Equipment for GlaciologyGeophysical Equipment for Glaciology
We have a custom built, low-frequency, short-pulse, ground-based radar system to image deep (>100 m) internal layers and the base of the ice sheet. Frequencies used with this system include 1, 2, 5 and 10 MHz. We also have a GSSI high-frequency (100MHz) ground-based radar system which can be used in several configurations and with a range of antennae frequencies. In addition, we have 7 GNSS GPS units for high-precision positioning, as well as multiple data loggers and time-lapse cameras for use in glaciological settings.

Grain-sizing Sedimentology Lab
This laboratory contains Ro-tap seiving apparatus, a Micromeritics 5100 clay and silt size x-ray analyzer, and an automated settling column for sizing sand fraction.

HPLC Mass Spectromtery Laboratory
Hydro Lab
This lab is dedicated to hydrogeology and environmental geology courses. It has facilities for grain-size analyses, porosity/ permeability testing, and a wide variety of lab demonstration techniques. It is also used as the base for groundwater field methods courses.

Hydrogeophysical EquipmentHydrogeophysical Equipment
These tools include: 1) Electrical Resistivity Meter. The AGI SuperSting R8 IP is an 8-channel resistivity and induced polarization imaging system specially designed for large surveys where speed of data acquisition is of essence. Can be used for land applications with 6 m spacing, underwater applications with 2 m spacing, or boat-towed surveys with 1 to 5 m spacing. 2) Infrared Camera. The FLIR ThermaCAM SC640 is a high-resolution thermal infrared camera. The portable handheld radiometer (7.5 to 13 micron wavelength) takes images at 640x480 pixels at rates of down to 16 Hz. The precision of the camera is 0.08 C.

Ice Dynamics ModelIce Dynamics Model
A 4' x 6' bench-top physical model simulating water flow under ice sheets and glaciers. Ice is represented by a transparent polymer. Water is injected below the "ice" at varying rates to observe the effects of discharge pulses on the channel geometry and surface motion of the "ice." Changes in discharge are designed to mimic a typical diurnal discharge pattern observed on alpine glaciers.

Isoprobe ICP Mass Spectrometer
The IsoProbe MC-ICP-MS is a multicollector, magnetic-sector inductively coupled plasma mass spectrometer featuring a hexapole collision cell immediately behind the interface region of the ICP, and the multicollector contains nine Faraday collectors, three channeltron ion-counting detectors for low-level signals (ion currents below 10-16 amp), and an axial Daly detector located behind a wide aperature retarding potential filter for high abundance sensitivity on the Daly detector. The IsoProbe mass spectrometer is capable of making isotope ratio measurements in a large number of systems, including Ca, Fe, Cu, Se, Rb-Sr, Sm-Nd, Lu-Hf, Re, common Pb, Th-U series isotopes, and in situ laser ablation measurements of Sr, common Pb, Lu-Hf, and U-Pb.

Isotope Clean Lab (Banner)
The Isotope Clean Lab is a 600 square foot clean chemistry lab with seven Class-100 workspaces for preparation of rock, mineral, soil, plant and water samples for chemical and isotopic analysis under low-contamination conditions.

Narrow Temperature-controlled Open Channel FlumeNarrow Temperature-controlled Open Channel Flume
Custom built 5-m tilting flume. Width: 30 cm. Depth: 1 meter. Other features: 3 removable windows with septa ports, fluids can be extracted or injected from the floor.

Paleoclimatology and Environmental Geochemistry Laboratory
Major instrumentation includes: (1) Gas chromatograph-single quadrupole mass spectrometer (GC-IRMS) for quantification and identification of organic compounds, and (2) HPLC-signgle quadrupole mass spectrometer (HPLC-MS) equipped with intelligent fraction collection for identification, quantification and isolation of high molecular weight compounds.

Paleolimnology Laboratory
Revolving Environmental Lab
The REL includes a geoprobe for drilling, an Ion Chromatograph for analyzing anions and cations, and a stratified aquifer sampler for analyzing varying groundwater flow and quality with depth.

Stable Isotope Lab for Critical Zone Gases
This lab is designed for the study of caves, soils and vegetative canopies. The GasBench II and Thermo Electron 253 in the High Temp. Stable Isotope lab are currently being used to measure the carbon isotope composition of soil and cave CO2, CO2 respired in soil respiration experiments, and dissolved inorganic carbon and calcium carbonates from multiple environments.

Superconducting Gravimeter LabSuperconducting Gravimeter Lab
A GWR superconducting gravimeter (precision ~0.01 micrGals) configured to be transportable, used in hydrologic and other studies. This is usually deployed in the field for campaigns of months and longer.

UT Experimental Deep Water BasinUT Experimental Deep Water Basin
The UTDW Basin is an experimental tank designed to physically model morphodynamic and stratigraphic evolution of continental margins and other subaqueous sediment transport systems. It is 4 m wide, 8 m long, and 2 m deep. The tank has 5 observation windows, underwater lighting and an array of synced overhead cameras. The facility is designed to map underwater deposit surfaces in space through time and measure fluid dynamic and sediment transport properties of formative density flows.

UT Sediment Transport and Earth-surface Processes (STEP) BasinUT Sediment Transport and Earth-surface Processes (STEP) Basin
The STEP Basin is an experimental flume designed to physically model morphodynamic and stratigraphic evolution of the fluviodeltaic system. It is 4 m wide, 5 m long, and 1.5 m tall. This facility is one of only three in the world with a computer-controlled basement motion, which can mimic 1) fore-hinge (passive margin), 2) back-hinge (foreland basin), and 3) lateral tilting subsidence patterns.

Walter Geology LibraryWalter Geology Library
The primary research collections of the library presently include more than 100,000 book and journal volumes and 46,000 geologic maps, among them the publications of the U.S. Geological Survey, most state geological surveys, and those of many foreign countries. Regional emphasis of the collection is on the Southwestern United States, Texas, and Mexico. The Institute and Bureau also have extensive libraries related to their specific research areas.

Wind Tunnel/Flume Lab
The Department of Geological Sciences maintains two wind tunnels for experiments in aeolian transport. One tunnel (0.5 m2 X 10 m) features a long transport section that ends in a slipface. The second tunnel features a rotating table (1 m in diameter) that can be used to simulate any range of wind directions.

Center for Integrated Earth System Science
The Center for Integrated Earth System Science (CIESS) is a cooperative effort between the Jackson School of Geosciences and the Cockrell School of Engineering. The center fosters collaborative study of Earth as a coupled system with focus on land, atmosphere, water, environment, and society.
Center for Sustainable Water Resources
The Center for Sustainable Water Resources conducts studies related to water quantity and quality aspects of water resources at local scales using field studies and regional scales using remote sensing and at annual to millennial timescales. Impacts of land use change and climate variability/change are important drivers considered in these studies. The results of these studies will have important implications for development of sustainable water resource programs in different regions.
Land, Environment & Atmospheric Dynamics
The LEAD group consists of graduate research assistants, postdoctoral fellows, research scientists and visiting scholars. We view the earth system in a holistic way, linking the atmosphere, ocean, biosphere, cryosphere, and solid earth as an integrated system. We use powerful methodologies such as satellite remote sensing and supercomputing simulations which are now profoundly changing research in earth system sciences. We place a strong emphasis on the societal impact of the research in earth system sciences.

Affiliated UT Programs & Centers

Center for Space Research
The University of Texas at Austin, Center for Space Research was established in 1981 under the direction of Dr. Byron D. Tapley. The mission of the Center is to conduct research in orbit determination, space geodesy, the Earth and its environment, exploration of the solar system, as well as expanding the scientific applications of space systems data.

Research Groups

Dynamic Stratigraphy Workgroup
ENCOMPASS: Research for Earth-Society Systems
Morphodynamics and Quantitative Stratigraphy
Posted by Peter P Flaig
Photo set includes images of fieldwork done on the North Slope of Alaska from 2005-2013 Posted by Peter P Flaig
Photos of fieldwork in the Central Transantarctic Mountains during the 2003-2004 and 2010-2011 field seasons. Posted by Peter P Flaig
Photos of fieldwork on clastic wedges of the Cretaceous Western Interior Seaway in Utah, Colorado, and Wyoming