From the Core to the Cosmos

Marine Geosciences

From tectonics at active plate margins to clastic sedimentation and carbonate systems in the marine environment, our research encompasses a wide range of marine geology and geophysics. Our researchers also study the interactions between oceanography and climate with tectonic and sedimentary systems and use a variety of techniques to past environments and paleoclimatology. Our rapid response program allows us to make timely field observations of transient geohazard events.

Research in the Marine Geosciences theme focuses on the following subthemes:

Marine Geosciences News

More News

Faculty & Research Scientists

William A AmbroseWilliam A Ambrose
Sedimentology, subsurface mapping of clastic depositional systems, oil and gas production analysis, coalbed methane
James A AustinJames A Austin
Stratigraphic evolution of a wide range of marine and lacustrine environments around the world
Jay L BannerJay L Banner
Isotopic methods, groundwater, oceans, ancient oceans, climate change, aquifers, caves, environmental science, geochemistry, paleoclimatology
Jaime D BarnesJaime D Barnes
Stable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes
Thorsten  BeckerThorsten Becker
mantle dynamics; fault system dynamics; structural seismology; numerical modeling
Gail L ChristesonGail L Christeson
Marine seismology, mid-ocean ridge structure and emplacement processes, oceanic crustal structure, ocean-bottom seismology, seismic refraction
Peter P FlaigPeter P Flaig
Research Focus: Cretaceous Western Interior Seaway of North America, North Slope-Alaska, Central Transantarctic Mountains-Antarctica, Canada,- Clastic sedimentology - Fluvial sedimentology - Paleoenvironmental reconstruction of continental to shallow-marine systems using sedimentology, stratigraphy, architecture, and ichnology in outcrop studies - Photography and high-resolution imagery (e.g. LiDAR, GigaPan) of clastic systems - Paleopedology - Remote logistics.
Craig S FulthorpeCraig S Fulthorpe
Marine geology, sedimentary geology, seismic stratigraphy and sedimentary architecture of continental margins, sequence stratigraphy and sea-level variation.
Omar  GhattasOmar Ghattas
Computational geoscience and engineering, simulation and optimization of complex solid, fluid, and biomechanical systems, inverse problems, optimal design, and optimal control
John A GoffJohn A Goff
Seafloor morphology and bathymetry, swath sonar mapping, stratigraphy of the shallow seabed, ultra-high resolution seismic reflection (chrip) systems, sedimentary horizons, sea ice draft, crustal heterogeneity, canyon morphology on continental slopes, abyssal hills
Sean S GulickSean S Gulick (Theme Lead)
Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events Marine geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and submersibles
Patrick  HeimbachPatrick Heimbach
Heimbach's research group (Computational Research in Ice and Ocean Systems -- CRIOS) in ICES is engaged in a number of projects, with main funding from NASA, NSF, DOE, and DARPA. [bold](1)[/bold] Our overarching research focusses on understanding the global ocean circulation, its role in climate variability and change, and its predictability on seasonal to decadal time scales. As part of the NASA-funded "Estimating the Circulation and Climate of the Ocean" (ECCO) consortium involving colleagues ...
Susan D HovorkaSusan D Hovorka
Geologic carbon sequestration in deep sedimentary environments as part of carbon capture and storage. PI of the Gulf Coast Caron Center ( focused on research relevant to commercial development of geologic sequestration in regions where it is both needed and possible. Monitoring field projects. Petrography and sedimentology supporting hydrogeology in karst and contaminated systems. K-12 and public outreach and education.
Michael R HudecMichael R Hudec
Salt tectonics, 3-D computer modeling, kinematic models for evolution and growth of salt structures, structural geology, cross-section restoration and balancing, seismic interpretation
Xavier  JansonXavier Janson
Carbonates sedimentology and sequence stratigraphy, petrophysics of carbonate, seismic signature of carbonate rock, seismic modeling, carbonate modern depositional environment
Charles  KeransCharles Kerans
Carbonate sequence stratigraphy, depositional systems, reservoir characterization, basin analysis, seismic interpretation, seismic stratigraphy, paleokarst analysis, carbonate diagenesis
John C LassiterJohn C Lassiter
Earth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/mantle boundary
Luc L LavierLuc L Lavier
Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Lawrence A LawverLawrence A Lawver
Marine geophysics, plate tectonics, magnetics, gravity, heat flow, seismic studies, paleogeographic reconstructions of Gondwana, the Polar Regions, East Asia, and the Western Pacific
Robert G LoucksRobert G Loucks
Research in carbonate, sandstone, and mudrock stratigraphy, sedimentology, diagenesis, reservoir characterization, and pore network analysis.
Nathaniel R MillerNathaniel R Miller
Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate [link:] [/link]
Kitty L MillikenKitty L Milliken
Petrography and geochemistry of siliciclastic rocks; diagenesis; electron microbeam methods: X-ray mapping, cathodoluminescence imaging; micro-scale reservoir characterization
Sharon  MosherSharon Mosher
Structural petrology, field-oriented structural geology, the evolution of complexly deformed terranes, strain analysis, deformation mechanisms, the interaction between chemical and physical processes during deformation
Yuko M OkumuraYuko M Okumura
Climate dynamics, climate variability and change, large-scale ocean-atmosphere interactions, atmospheric teleconnections, paleoclimate and thermohaline circulation, climate change
Cornel  OlariuCornel Olariu
Clastic Sedimentology, Stratigraphy, Depositional Environments, Basin Analysis
Jeffrey G PaineJeffrey G Paine
Near-surface geophysics in hydrogeology and environmental and Quaternary geology; coastal geology; Quaternary geology and geomorphology; computer applications in the geological sciences
Judson W PartinJudson W Partin
Paleoclimate, Stable and Radiogenic Isotope Geochemistry, climate change
Stephen C PhillipsStephen C Phillips
methane hydrates, sediment biogeochemistry, environmental magnetism, paleoceanography
Terrence M QuinnTerrence M Quinn
Paleoclimate, climate, climate change, climate dynamics, paleoclimatology, paleoceanography, sedimentary geology and geochemistry
Timothy B RoweTimothy B Rowe
Vertebrate paleontology, evolution and development of the vertebrate skeleton, phylogenetic systematics, the early history of mammals and their extinct relatives among Synapsida, the history of birds and their extinct relatives among Dinosauria, the history of other amniotes, high-resolution X-ray computed tomography, CT scanner, DigiMorph, informatics
Timothy M ShanahanTimothy M Shanahan
Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific stable isotope analysis
John W SneddenJohn W Snedden
Sequence Stratigraphy, Sedimentology, Reservoir Development and Connectivity, Petroleum Geoscience
Daniel  StockliDaniel Stockli
Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Frederick W TaylorFrederick W Taylor
Tectonic geomorphology, stratigraphy, and paleogeodesy/paleoseismology at convergent plate margins Paleoclimate, fossil corals as a proxy for past sea-surface temperatures. Corals as recorders of relative sea level for vertical tectonics and sea-level history.
Scott W TinkerScott W Tinker
Global energy supply and demand, Technology Administration, Multidisciplinary reservoir characterization, Carbonate sedimentology, Sequence stratigraphy, 3-D reservoir modeling, Resource assessment.
Estibalitz  UkarEstibalitz Ukar
Fracture analysis and structural diagenesis Brittle structural petrology Fractured carbonate rocks Tectonics and metamorphism of subduction zones
Harm J Van AvendonkHarm J Van Avendonk
Van Avendonk is an active-source seismologist who specializes in the acquisition and inversion of seismic refraction data on land and at sea. Often these seismic refraction data are used for a tomographic inversion. The resultant seismic velocity models help us to interpret the composition of the Earths crust and mantle, the geometry of sedimentary basins, and the structure of plate boundaries.
Laura Wallace
Crustal deformation, GPS/Geodesy, active plate boundary processes, subduction tectonics, geohazards
Hongliu  ZengHongliu Zeng
Seismic sedimentology; seismic geomorphology; seismic and sequence stratigraphy; Characterization of thin-bed reservoirs; seismic chrono-stratgraphy

Postdoctoral Researchers

Jamin S GreenbaumJamin S Greenbaum
Eric Prokocki
Open channel hydraulics and morphodynamics, Fluvial geomorphology/sedimentology, Estuarine/Deltaic hydraulics and sedimentology, and Turbidity currents
Manasij  SantraManasij Santra
Natural gas hydrate systems, deepwater depositional processes and architecture of deepwater deposits, basin-margin clinoform shape and stacking pattern, stratigraphy of clastic shelf margins, stratigraphy of basins under influence of halokinetic movement, reservoir modeling, basin modeling.
Zachary T SickmannZachary T Sickmann
Basin Analysis, Convergent Margin Tectonics, Source-to-Sink Sediment Dispersal, Provenance Analysis, Sedimentology in the Anthropocene

Adjunct/Emeritus Faculty​ & Research Scientists

William L FisherWilliam L Fisher
Basin analysis, sequence stratigraphy, depositional systems, petroleum geology, resource assessment, energy policy
Marcus GaryMarcus Gary
Karst Hydrogeology
John M SharpJohn M Sharp
Hyrdogeology; flow in fractured rocks; thermohaline free convection; fracture skin effects; regional flow in carbonate rocks; hydrology of arid and semi-arid zones; subsidence and coastal land loss; effects of urbanization; alluvial aquifers; hydrogeology of sedimentary basins;hydrological processes in ore deposit formation; and hydrogeophysics.
James T SprinkleJames T Sprinkle
Invertebrate paleontology; evolutionary biology; fossil and living echinoderms; echinoderm systematics; Paleozoic marine communities and ecosystems; paleoecology; crinoids; blastoids; rhombiferans; eocrinoids; parablastoids; blastozoans; edrioasteroids; edrioblastoids; starfish; stylophorans; ctenocystoids; helicoplacoids; Cambrian evolutionary fauna; Paleozoic evolutionary fauna; Ordovician radiation; Cambrian explosion; environment & earth science
Ronald J SteelRonald J Steel
Dr. Steel's research is aimed at using clastic sedimentology to address problems in basin analysis, dynamic stratigraphy and clastic reservoirs. I am particularly interested to decipher the signatures of tectonics, climate, sea level change and sediment supply in stratigraphic successions.
Paul L StoffaPaul L Stoffa
Multichannel seismic acquisition, signal processing, acoustic and elastic wave propagation, modeling and inversion of geophysical data
Robert H TathamRobert H Tatham
Dr. Tatham's research is presently on interpretation and analysis of multi-component seismic data. In particular, by considering both seismic P-wave and S-wave data, many of the effects of solid rock properties and pore-fluid properties may be separated.

Research Staff

Kathy EllinsKathy Ellins
Geoscience education; Discipline Based Education Research (DBER); teacher professional development; geoscience curriculum development; undergraduate geoscience teacher preparation; climate literacy; geoscience, art and design engagement
Tucker F HentzTucker F Hentz
Siliciclastic sequence stratigraphy, sandstone petrology, continental depositional systems, field mapping and stratigraphy
Ian O NortonIan O Norton
Plate tectonics, structural evolution of continental margins, reconciliation of observations from structural geology with regional tectonics
Peter J Polito
Designing and building complex experimental systems, working with high fluids, metrology, data acquisition, LabVIEW programing, down hole tool development and testing, odds and ends.
Ramon TrevinoRamon Trevino
Sequence stratigraphic interpretations (well logs, 3-D seismic), integrated reservoir characterization, subsurface correlation and mapping (using workstation and PC) and subsurface structural interpretation (using 3-D seismic), project management, CO2 sequestration
Christopher K ZahmChristopher K Zahm
Reservoir characterization, flow modeling in fractured reservoirs, porosity-permeability evolution

Graduate Students

Arnold Aluge Aluge
CO2 capture, sequestration, seismic interpretation and subsurface monitoring. Renewable energy and energy systems Mineralogy, petrology, geochemistry and petrogenetic evolution of igneous and metamorphic rocks Structural geology and tectonics Developing computer aided field mapping techniques
Abdulah  EljalafiAbdulah Eljalafi
Abdulah s research focuses on understanding depositional and stratigraphic processes of carbonate platforms. His research focuses on deciphering the architectural relationships of mid Cretaceous carbonate platforms in mexico from a depositional standpoint based on field mapping. Other Interests include microbialite morphology, field stratigraphy, and invertebrate paleontology.
Yuqian(Philomena) Gan
I have broad interests in sedimentology and stratigraphy with focus on: Slope channel architecture and evolution Sediment density flow processes and deposits Sequence stratigraphy of medium depth (200-500m) back-arc and foreland systems
Andrew GaseAndrew Gase
I use seismic and electromagnetic geophysical methods to probe the earth at lithospheric and environmental scales. My recent interests include subduction zone structure, volcanic geomorphology, and magmatic-tectonic interactions.
Dominik A KardellDominik A Kardell
I am interested in the evolution of oceanic crust and the processes that affect its physical properties. I am currently performing extensive seismic velocity analysis using MCS data from the Crustal Reflectivity Experiment Southern Transect (CREST). My goal for this project is to characterize the velocity structure of the upper oceanic crust in the western South Atlantic, which has implications for the effect of magmatism and hydrothermal processes on the makeup and geologic structure at ...
Alexandra LachnerAlexandra Lachner
Landon  LockhartLandon Lockhart
Landon's research is focused on characterizing the pressures and stresses in complex geologic settings. Specifically, his research integrates geomechanical modeling, experimental analysis, and field data at the Mad Dog Field, deepwater Gulf of Mexico. The title of Landon's thesis is "New Pore Pressure Prediction Workflow to Capture the Effects of Mean Effective Stress and Deviatoric (shear) stress at the Mad Dog Field." Landon has also recently developed a new online software tool (UT-FAST-P^3) to predict ...
Patrick (Kevin) MeazellPatrick (Kevin) Meazell
I am a deepwater sedimentologist and stratigrapher. My research focuses on the deposition of clastic, methane hydrate-bearing reservoirs in the deepwater Gulf of Mexico. I study these deposits at the basin- to grain-scale. During my time at the Jackson School of Geosciences I have helped to plan and execute the drilling of multiple wells as part of the UT led GOM2 project (
Paul MorrisPaul Morris
Advised by Professor David Mohrig, Dr Jake Covault and Dr Zoltan Sylvester. Working with the Quantitative Clastics Lab. Using forward stratigraphic models coded in python to understand and quantify the evolution of (deep-water) channel-belt stratigraphy. Linking the movement and morphology of channels to their resultant deposits - exploring resulting issues around reservoir connectivity (flow behavior) for Oil/Gas extraction. Quantitative PhD with coding skills a core component. I have spent Summers 2017 through 2019 working as an ...
Kelly Olsen
seismic reflection processing/interpretation, Chile, Hikurangi, well-log interpretation, megathrust earthquakes, tectonics
Son D PhanSon D Phan
Seismic quantitative methods for reservoir characterizations: inversion, wave propagation, rock physics modeling, anisotropy, uncertainty analysis
Travis N StoneTravis N Stone
Travis Stone is a first year PhD student working in the Martindale lab. He received his B.S. in Geological Sciences in 2018 from California State University, Fullerton, where he studied Triassic reefs and their recovery following the End-Permian mass extinction in the Panthalassic Ocean. Travis is interested in ecosystem reconstruction following extinction events and other environmental stressors and plans on studying Jurassic reefs in Morocco. He is also passionate about teaching geoscience and has worked ...
John M SwartzJohn M Swartz
Research interests: Sedimentology/stratigraphy, coastal and nearshore processes, quantitative geomorphology, marine geophysics, statistical methods in geoscience
Murat  TamerMurat Tamer
Gabriel  Travassos TagliaroGabriel Travassos Tagliaro
Research Interests: - Marine Geology, Stratigraphy and Sedimentology, Paleoceanography and Paleoclimate; - Neogene Events; - Seismic Stratigraphy; Current Projects: Neogene Evolution of Western Australia. International Ocean Discovery Program (IODP) Expedition 369 - Australia Cretaceous Climate and Tectonics.
Melianna Ulfah
My academic and industrial experiences are my journey in contributing to provide adequate energy while giving back to the environment. I possess theoretical and practical skills in mining, petroleum, and environment sectors, and I strive to solve challenging problems in energy from various perspectives. As a geophysicist currently working on Carbon Capture and Sequestration project, my career objective is to support the energy transition, by making the current dominant sources of energy cleaner.
On a general level, Marine Geosciences is a multi-disciplinary endeavor and students take a broad range of courses. This includes a Marine Geology & Geophysics Field Course to provide hands-on instruction for graduate and upper-level undergraduate students in collecting and processing Marine Geosciences data.

Marine Geology & Geophysics

GEO 381T Marine Tectonics
Tectonic processes within the dynamic Earth, with a focus on oceanic structures. Subjects may include fundamentals of plate tectonics; plate motion, driving forces, and mantle convection; evolution of triple junction and plate margins; plate reconstructions; earthquakes and focal mechanisms; structure and geochemistry of the Earth's interior; mantle structure and tomography; rheology and deformation mechanisms in mantle and crust; heat flow, gravity, the geoid, and paleomagnetism; hotspots and mantle plumes; seafloor spreading and oceanic spreading ridges; oceanic transform faults and fracture zones; and subduction zones, volcanic island arcs, and marginal seas. Only one of the following may be counted: Geological Sciences 338T, 371C (Topic: Tectonics I), 381T, 391 (Topic: Tectonics I). May not be substituted for any required geological sciences course.
GEO f391/f348K Marine Geology and Geophysics Field Course
Each Maymester we offer a field course designed to provide hands-on instruction for graduate and upper-level undergraduate students in the collection and processing of marine geological and geophysical (MG&G) data. The course covers high-resolution air gun and streamer seismic reflection, CHIRP seismic reflection, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.) [More on instrumentation here]. Scientific and technical experts in each of the techniques first provide students classroom instruction. The class then travels to the Gulf Coast for a week of at-sea field work as well as on-shore lab work. Two small research vessels are used concurrently: one for multibeam bathymetry, sidescan sonar, and sediment sampling, and the other for high-resolution seismic reflection and CHIRP sub-bottom profiling. Students rotate daily between the two vessels and lab work. Upon returning to Austin, students, working in teams, are expected to integrate the techniques into a final project that examines the geologic history and/or sedimentary processes as typified by a small area of the Gulf Coast continental shelf. This class satisfies field experience requirements for some degree programs. Enrollment is limited to 12 students.
GEO 391 Marine Geology
Prerequisite: Graduate standing in geological sciences. Some topics require additional prerequisites; these are identified in the Course Schedule. Course number may be repeated for credit when the topics vary.
GEO 391 Marine Geology and Geophysics Topics

Sedimentology & Stratigraphy

GEO 380G Construction and Interpretation of 3-D Stratigraphy
Uses three-dimensional volumes of basin-filling stratigraphy to explore how depositional landscapes are preserved in the sedimentary record and how sedimentary deposits can be analyzed to produce quantitative reconstructions of past environmental states. Four lecture hours a week for one semester. Prerequisite: Graduate standing.
GEO 380R Dynamics of Sedimentary Systems I
Explores the fundamental concepts of transport systems at the Earth's surface, focusing on principles and quantitative aspects of fluid flow, sediment transport, and bedforms, as well as atmospheric and oceanic circulation, complex systems, and the integration of small-scale processes in developing quantitative stratigraphic models. Four lecture hours a week for one semester. Geological Sciences 380E and 380R may not both be counted. Prerequisite: Graduate standing.
GEO 383 Depositional Systems: Terrigenous Clastics
The processes, characteristics, and relationships among fluvial, deltaic, shore-zone, shelf, and slope depositional systems; depositional basin analysis used in stratigraphy and economic geology. Four lecture hours a week for one semester, with two weekend field trips. Normally offered in the fall semester only. Prerequisite: Graduate standing and consent of instructor.
GEO 383N Depositional Systems: Carbonates/Evaporites
Analysis of carbonate and evaporite depositional systems from sedimentary structures, faunal and ichnofaunal associations, grain types, vertical and lateral facies successions within time-significant packages, and sediment body geometries. Three lecture hours and three laboratory hours a week for one semester. Offered irregularly. Prerequisite: Graduate standing and consent of instructor.
GEO 380N Sequence Stratigraphy
Use of seismic reflection systems for quantitative stratigraphic characterization of the subsurface. Three lecture hours and two laboratory hours a week for one semester. Normally offered in the spring semester only. Prerequisite: Graduate standing, and Geological Sciences 416M and 465K or their equivalents.
GEO 383S Sedimentary Basin Analysis
Quantitative and applied study of basin subsidence and sediment accumulation. The first half of the course considers theoretical basin evolution due to flexural, thermal, dynamic, and fault-related subsidence. The second half of the course involves in-depth analysis of selected basin systems and includes student research projects and presentations on assigned topics. Specific topics vary from year to year. Normally offered in the spring semester only. Prerequisite: Graduate standing, and Geological Sciences 383 or the equivalent.
GEO 383T Tectonic Climate Interaction in Foreland Basins
Integration of recent advances in the understanding of modern and ancient foreland basin sedimentation, quantitative basin modeling, regional and global climate change, and the geometry and kinematics of fold-thrust belts. Prerequisite: Graduate standing and consent of instructor.


GEO 383D Numerical Methods I
A survey of geophysical data analysis methods, with a focus on time series, including sampling and aliasing, convolution and correlation, statistics, linear digital filters, properties and applications of the discrete Fourier transform, and least squares. Instruction in MATLAB and Fortran and solution of data analysis problems using these two languages. Two lecture hours and two laboratory hours a week for one semester. Normally offered in the fall semester only. Prerequisite: Graduate standing.
GEO 391 Earth Dynamics
The study of the evolution of the Earth lithosphere and its tectonics evolution sometimes requires a quantitative approach based on continuum mechanics. The aim of this class is to provide the basic tools to approach geological questions in a quantitative manner. The major outstanding questions concerning the formation of convergent and extensional plate margins as well as mantle convection will be addressed. This course is based on a discussion of the physical properties of earth materials and dynamic processes in the solid Earth. We will follow Geodynamics by Turcotte & Schubert, in covering topics in stress and strain, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, and crustal faulting as mechanisms and consequences of plate tectonics. Other material on the rheological properties of Earth materials will be provided as the class proceeds. We will also perform numerical and analogue experiments of tectonic and geodynamics processes.
GEO 384C Geophysics I: Exploration Geophysics
Seismic, gravity, magnetic, electrical, and electromagnetic methods of exploration for petroleum and minerals. Three lecture hours and two laboratory hours a week for one semester. Normally offered in the fall semester only. Prerequisite: Graduate standing.
GEO 384S Seismic Reflection Processing
Reduction of seismic and other geophysical data from field data to final geologic cross sections, using real data sets and commercial seismic processing software. Three lecture hours and two laboratory hours a week for one semester. Offered irregularly. Prerequisite: Graduate standing, and Geological Sciences 384R or the equivalent.
GEO 384G Subsurface Mapping on Petroleum Workstations
Introduction to basin analysis, subsurface mapping, and petroleum exploration using a workstation. Subjects may include common tectonic settings of petroleum basins, seismic stratigraphy, structural styles, and petroleum systems. Workstation techniques include well log editing, lithology interpretation, correlation of tectonic events, integration of seismic and subsurface well data, interpretation of two- and three-dimensional seismic reflection data and structure, and isopach and seismic attribute mapping. Geological Sciences 384G and 391 (Topic: Introduction to Petroleum Workstations) may not both be counted. Prerequisite: Graduate standing and consent of instructor.

Structure and Tectonics

GEO 386G GIS & GPS Applications in Earth Sciences
Theory and practice of geographic information system (GIS) and Global Positioning System (GPS) technologies, and their applications to problems in earth sciences. Laboratories and field trips provide hands-on experience with the collection, mapping, and analysis of geologic and other field data using GPS equipment and GIS software. Topics include map projections; datums and reference frames; cartographic principles; remotely sensed data (satellite and aerial photos, image radar); vector- and raster-based image formats; geospatial data resources; GIS software applications; surveying principles; GPS constellation and data structure; differential GPS; data logging schemes; GPS postprocessing software; integration of GPS and GIS in mapmaking; extant GIS applications in geology and hydrogeology. Three lecture hours and two laboratory hours a week for one semester, and two weekend field trips. Offered in the fall semester only. Geological Sciences 386G and 391 (Topic: Geographic Information System and Global Positioning System Applications in Earth Sciences) may not both be counted. Prerequisite: Graduate standing in geological sciences and consent of instructor.
GEO 381K Tectonic Problems
Origin of regional structural features, complex and controversial structures; tectonic control of ore deposits. Prerequisite: Graduate standing in geological sciences and consent of instructor. Course number may be repeated for credit when the topics vary.
GEO 391 Ins and Outs of Subduction Zones
GEO 380C Advanced Structural Geology
Origin of earth structures, solution of advanced structural problems, newest techniques, field techniques, and field problems. Prerequisite: Graduate standing and consent of instructor.
GEO 391 Continental Tectonics


GEO 291 Hydrogeophysics
For each semester hour of credit earned, the equivalent of one class hour a week for one semester; additional hours may be required for some topics. Offered irregularly. May be repeated for credit when the topics vary. Prerequisite: Graduate standing in geological sciences. Some topics require additional prerequisites; these are identified in the Course Schedule.
GEO 382D Crustal Geofluids
Designed to provide a technical foundation for exploring how fluids drive fundamental geologic processes in sedimentary basins. Includes characterizing pressure and stress in sedimentary basins, exploring the origin of overpressure through theory and characterization, and examining how pressure and stress couple. Problems include how sedimentation generates overpressure, how hydrocarbons are trapped in the subsurface, how mud volcanoes form, how submarine landslides are generated, and the origin of methane hydrates. Geological Sciences 382D and 391 (Topic: Crustal Fluids) may not both be counted. Prerequisite: Graduate standing.


GEO 380T Paleoclimatology
Examines climate records encoded in sedimentary archives through geologic time. Normally offered in the fall semester only. Prerequisite: Graduate standing or consent of instructor.
GEO 391 Late Pleistocene Variability
Research in Marine Geology and Geophysics (Graduate)
There are opportunities for research within Marine Geology and Geophysics.
Posted by: Sean Gulick
High Resolution 3D marine seismic for fluid studies (Graduate)
Opportunities exist to become involved in the design, acquisition, processing, and interpretation of high-resolution 3D marine seismic data. Current applications include characterization for subsurface storage of carbon dioxide and natural fluid migration studies. We anticipate development into imaging modern systems as reservoir analogs.
Posted by: Tip Meckel
PhD Student (Graduate)
I am accepting applications for a new PhD Student in my lab. This student must be interested in paleontological or carbonate sedimentology research (both would be best), and should be aware of the current/recent projects in the Martindale Lab. Exceptional MSc students will be considered, but preference is for a doctoral student (prior research experience at the undergraduate or MSc level is desired).
Posted by: Rowan Martindale
Carbonate Petrography Lab
The lab is a combined effort of the Department of Geological Sciences and the Bureau of Economic Geology's Carbonate Reservoir Characterization Research Laboratory. The lab contains tools for characterization of carbonate outcrops including the most recent version of the Optech Ilris long-range ground-based LIDAR system and a full suite of interpretation software and high-end workstations using Innovmetric Polyworks, Petrel, GoCad, and standard ARC software tools. Other tools include low- and high-magnification petrographic scopes, digital photographic capabilities, and a cold-cathode microscope setup with low-light-capable photomicroscopy. An extensive collection of samples from classic carbonate field areas both modern and ancient is also available for comparative analysis.

Core Research Center (Austin)Core Research Center (Austin)
The Austin Core Research Center (CRC), located adjacent to Bureau headquarters, is the Bureau of Economic Geology's main core repository for core and rock material donated to the university. More than 500,000 boxes of core and cuttings from wells drilled throughout Texas, the U.S., and the world are available at this facility for public viewing and research. Austin, Houston, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. The Integrated Core and Log Database (IGOR) is a searchable database for all CRC core and well cutting holdings. Public facilities include core examination layout rooms and processing rooms for slabbing core. Other services are available upon request.

Core Research Center (Houston)Core Research Center (Houston)
The Houston Research Center (HRC), is located on the west side of Houston, Texas, six miles north of I-10 and two miles south of U.S. Highway 290. This state-of-the-art climate-controlled facility is equipped to permanently store and curate over 900,000 boxes of geologic core and cuttings. The Houston, Austin, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. In addition to the climate-controlled core and cuttings warehouse, the HRC complex has offices, laboratories, and a well-lit core layout room available for visiting scientists. There are also two conference rooms to accommodate guests attending short courses and seminars. Other services are available upon request. Nominal fees are charged to rent table space and to view core. The HRC has space dedicated for storing samples and cores acquired by NSF-funded research. The HRC curates this material and facilitates continued access to the material by researchers. The Integrated Core and Log Database (IGOR) is a searchable database for all core and well cutting holdings.

Current Meter ArchiveCurrent Meter Archive
We take existing moored current meter data, process it using a handful of MatLab routines, and output one tarfile containing all the data in one standardized format. We have included here (v. 1) data from OSU (Buoy Group and Deep Water Archive) as well as 7 different smaller datasets obtained from Carl Wunsch.

Down-hole Technologies for Ocean DrillingDown-hole Technologies for Ocean Drilling
Researchers have engineered state-of-the-art equipment that facilitate the collection of down-hole measurements. These tools are: MDHDS - Motion De-Coupled Hydraulic Delivery System, a method for inserting penetrometers in borehole; T2P - Temperature 2 Pressure Probe, a penetrometer for measurement of pressure & temperature. See related website for more detail.

Dual-frequency Geodetic Quality GPS ReceiversDual-frequency Geodetic Quality GPS Receivers
We have 5 Trimble Net-RS receivers, tripods, choke ring antennas. One is with Tiffany Caudle at BEG used to support the Optech Lidar system. The other 4 are in JGB 3.122 and used by various groups.

Electron MicroprobeElectron Microprobe
Installed in 2002-2003, the JEOL JXA-8200 electron probe microanalyzer (EPMA) is equipped with five wavelength dispersive spectrometers (WDS), an energy dispersive detector (EDS), and two image detectors in secondary and backscattered electron modes. The primary aim of the microprobe is quantitative elemental analysis of minerals on a microscale with high precision (less than a percent relative for major constituents) and low detection limits (commonly a few tens to few hundreds ppm)

Grain-sizing Sedimentology Lab
This laboratory contains Ro-tap seiving apparatus, a Micromeritics 5100 clay and silt size x-ray analyzer, and an automated settling column for sizing sand fraction.

Ocean-Bottom Seismometer (OBS)Ocean-Bottom Seismometer (OBS)
An Ocean-Bottom Seismometer (OBS) is a seismometer that can be deployed on the seafloor for weeks or months, recording either earthquakes or man-made seismic signals. To withstand pressures at large depth (up to 5500 m) in the oceans, all electronics of this instrument are kept inside a glass sphere which can withstand such pressures. The sensors of all instruments (discussed below) include a 3-component accelerometer and a hydrophone, all designed for seismic data with a dominant frequency near 10 Hz. The seismic data are recorded on flash memory. Correct timing of the seismic recording is provided by an accurate clock, which also resides inside the sphere. After a seismic study on the seafloor is complete, the instrument is brought back to the sea surface using an acoustic release mechanism. UTIG has long been involved in marine seismology. The development of a UTIG OBS instrument program began in 1978.

Portable High-Resolution Multichannel Seismic System (MCS)Portable High-Resolution Multichannel Seismic System (MCS)
UTIG owns and maintains elements of a self-contained, portable, high resolution multichannel seismic (MCS) system that has been used over the past several years in salt- and fresh-water depths from ~4m to over 1km, on vessels from 10m to 35m in length. The 24-channel system is designed to be transported worldwide and to be installed on vessels of opportunity. Survey design, navigation, data acquisition, and near real-time MCS processing can be performed on non-dedicated laptops in the field. Deployment and recovery of gear is done by hand, requiring as few as 3 persons. The only constraints on the system are weight limits of the vessel and electrical requirements of the dedicated air compressors. For platforms with insufficient electrical capabilities, a fuel-powered generator or air compressor can be rented as a substitute.

Quadrupole ICP Mass Spectrometer
The Quadrupole ICP-MS laboratory (with laser ablation) is used for elemental determinations in a wide range of liquid (e.g., natural waters, dissolved sediments/rocks, digested biomass) and solid (e.g., rocks, minerals, glasses) samples. The ICP-MS instrument is an Agilent 7500ce, capable of measuring trace element concentrations in solution over a nine-order linear dynamic range, from ppt to 100s of ppm. Sample introduction systems include a Micromist concentric nebulizer with a Peltier-cooled spray chamber for aspirating solutions, and a New-Wave UP193-FX 193 nm excimer laser ablation system for micro-sampling of solids. Sub-ppm detection limits are obtained routinely by laser ablation. The Agilent 7500ce is equipped with a collision/reaction cell, allowing for quantification of environmentally important matrix/plasma-sensitive elements such as As, Se, and Fe. The instrument is housed in a positive-pressure HEPA-filtered laboratory equipped with a weighing station, laminar flow bench, and Type 1 (18.2 M?) ultrapure water station.

R/V Lake ItascaR/V Lake Itasca
UTIG owns and operates a 22' aluminum hulled research vessel, the R/V Lake Itasca. The Itasca is a custom built hull powered by twin 115 HP Honda outboard engines equipped with hydraulic steering. The vessel is equipped with a starboard side davit (Fig. 5) that has been used to deploy a variety of water column gear including CTDs, grab samplers, gravity corers, isokinetic water samplers and niskin bottle samplers. Generally the vessel operates in survey mode with a maximum of 3-5 persons onboard. The vessel is equipped with rack mounts that contain a Reson Seabat multibeam system. Other acoustic devices that have been towed by the Itasca include the UTIG CHIRP subbottom profiler, sidescan sonars, and acoustic Doppler current profilers. The R/V Lake Itasca has been used throughout the Gulf of Mexico in rivers, estuaries and the inner shelf in calm seas. It has also been transported as far afield as British Columbia (Fraser River). The vessel can be shipped worldwide in a standard shipping container.

Radioisotope Counting Lab
This laboratory contains gamma and alpha spectrometers for measuring radioistope activities in sediment and water samples.

Sonar Seafloor Mapping SystemsSonar Seafloor Mapping Systems
The Institute maintains two sonar systems for seafloor mapping: 1) The Reson Seabat 7101 (aka 'WANDA') multibeam sonar. 2) The Edgetech 272-TD sidescan sonara towed instrument that operates at either 100 kHz or 500 kHz. The 272-TD towfish is lightweight enough so that it can be deployed by one person, which makes this system ideal for use from smaller boats or ones where an onboard handling system is not available. We utilize a Coda Geosurvey DA500 acquisition unit (

Sub-Bottom Profiling SystemsSub-Bottom Profiling Systems
UTIG owns and maintains an integrated sonar system for use in conducting Compressed High Intensity Radar Pulse (CHIRP) subbottom profiling of the upper sediment layers of the ocean bottom or various fresh water systems. The 3200-XS system was purchased in 2007 from Edgetech Corp. of West Wareham, MA (see and can be deployed in water depths from ~2 m to >300 m with an optimum towing height of 3-5 m above seafloor. Deployment and recovery of the towfish can be done by shipboard winches for shallower deployments or a larger UTIG-owned Electro-Hydraulic winch. Constraints on vessel size are dependent on shipboard winches capability of handling either the large (190kg SB-512i) or small (76 kg SB-216S) towfish. Power control, navigation, video display, data acquisition and data storage are all performed by one topside processing unit. The system can be powered by 18-36 VDC or 110/240 VAC (auto-ranging). The system is presently comprised of: 3200-XS topside computer processor, 4-transducer SB-512i towfish, 1-transducer SB-216s towfish, electro-hydraulic winch with 500 m of armored tow cable, 3 shallow water tow cables of 10, 25, and 50 m length, GPS navigation system.

Walter Geology LibraryWalter Geology Library
The primary research collections of the library presently include more than 100,000 book and journal volumes and 46,000 geologic maps, among them the publications of the U.S. Geological Survey, most state geological surveys, and those of many foreign countries. Regional emphasis of the collection is on the Southwestern United States, Texas, and Mexico. The Institute and Bureau also have extensive libraries related to their specific research areas.

Bars in Tidal Environments
Gulf Basin Depositional Synthesis Project
The UT Gulf Basin Depositional Synthesis Project (GBDS) is an ongoing, industry-supported, comprehensive synthesis of Cenozoic fill of the entire Gulf of Mexico basin. The results are distributed as a digital data base that is updated regularly. The project has led to major new contributions to the understanding of the depositional history and framework of the Gulf of Mexico Basin. The project has focused on refining sequence correlations between the continental margin and deep basin stratigraphies, mapping sedimentary transport axes and paleogeographies through time, defining the evolving roles of submarine canyons, retrogradational margins, and shelf-margin delta systems in localizing in time and space sand transport to the slope and abyssal plain, and better understanding regional controls on reservoir facies and their deposition.).