Solid Earth & Tectonic Processes

From plate tectonic and deformation processes to mantle evolution and dynamics and melt generation and volcanism, our research spans the range of tectonics and deep crustal processes.

Research in the Solid Earth & Tectonic Processes theme focuses on the following subthemes:

Solid Earth & Tectonic Processes News

More News

Faculty

Jaime D Barnes

Jaime D Barnes

Stable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes
Thorsten  Becker

Thorsten Becker

mantle convection; plate tectonics; structural seismology; numerical modeling; earthquakes; fluid dynamics
Elizabeth J Catlos

Elizabeth J Catlos

Can also see https://www.catlos.work/ My primary research focus is geochemistry, and how the fundamentals of chemistry (mineral reactions, radiogenic and stable isotopes, major and trace elements) can be and are used to understand what the Earth was like in the past. In this, I have ...
Ian W Dalziel

Ian W Dalziel

Tectonics, geodynamics, geography of ancient times, plate reconstructions, structural geology
James E Gardner

James E Gardner

Volcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies
Stephen P Grand

Stephen P Grand

Seismic imaging of Earth's mantle, tomography, dynamics of flow in the mantle, regional seismic studies
Brian K Horton

Brian K Horton

Tectonics of sedimentary basins, evolution of orogenic systems, sediment provenance and routing systems, nonmarine depositional processes.
John C Lassiter

John C Lassiter

Earth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/...
Luc L Lavier

Luc L Lavier

Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Jung-Fu  Lin

Jung-Fu Lin

Mineral physics, physics and chemistry of planetary materials, solid-Earth geophysics and geochemistry, high-pressure diamond anvil cell, X-ray and laser spectroscopy
Timothy B Rowe

Timothy B Rowe

Vertebrate paleontology, evolution and development of the vertebrate skeleton, phylogenetic systematics, the early history of mammals and their extinct relatives among Synapsida, the history of birds and their extinct relatives among Dinosauria, the history of other amniotes, high-resolution X-ray computed tomography, CT scanner, DigiMorph, informatics
Demian M Saffer

Demian M Saffer

Active tectonics, fault/sediment mechanics, geohydrology.
Mrinal K Sen

Mrinal K Sen

Seismic wave propagation including anisotropy, geophysical inverse problems, earthquakes and earth structure, applied seismology, petroleum exploration including 4D seismology
Danny  Stockli

Danny Stockli

Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Chenguang  Sun

Chenguang Sun

Deep volatile cycling; magmatic and metamorphic processes; planetary differentiation and habitability
Nicola  Tisato

Nicola Tisato

Experimental rock physics and rock mechanics. Digital Rock Physics. Speleology. Seismic wave attenuation, Physical properties of rocks, Wave-Induced-Phenomena, Genesis of caves and speleothems, Reservoir characterization, Nuclear waste management.

Lecturers

Peter H Hennings

Peter H Hennings

Peter Hennings expertise is applied structural geology and geomechanics for which his interests are broad spanning structural systems analysis, subsurface interpretation, fault system characterization, fractured reservoir characterization, reservoir geomechanics, and subsurface fluid flow. Dr. Hennings is known as an integrator which is vital for the study of induced seismicity for ...
Stephen E Laubach

Stephen E Laubach

Structural diagenesis, structural geology, fracture analysis, fluid inclusion and cathodoluminescence studies, rock mechanics, mechanical and fracture stratigraphy, hydrocarbon exploration and development in deep and/or structurally complex areas, tight gas sandstone, coalbed methane, shale gas; geothermal, geologic aspects of hydraulic fracturing, application of borehole-imaging geophysical logs to stress and fracture ...
Staci L Loewy

Staci L Loewy

Nathaniel R Miller

Nathaniel R Miller

Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate [link: http://www.jsg.utexas.edu/news/2018/05/new-research-suggests-that-dawn-of-plate-tectonics-could-have-turned-earth-into-snowball/]

Affiliated Faculty

Claudio  Faccenna

Claudio Faccenna

Topics: subduction tectonic and morphological evolution of convergent margin, evolution of orogenic belt and exhumation of deep metamorphic rocks, dynamic topography, trench migration and back-arc deformation, mantle convection, volcanism and fluid circulation in the crust. Tools: Structural geology and geomorphology, experimental / numerical geodynamic modelling, paleomagnetism, seismic lines interpretation. Field sites: ...

Emeritus

Mark A Helper

Mark A Helper

Dr. Helper is a field geologist, a generalist whose interests span igneous and metamorphic petrology, structural geology, tectonics, mineralogy and planetary field geology. His current research explores geochemical and isotopic similarities of Proterozoic and Archean crust in East Antarctica and the southwestern U.S., the Precambrian geology of Texas, and ...
J. Richard Kyle

J. Richard Kyle

Ore deposits geology, mineral resources and society, geology and supply chains of critical materials, minerals exploration and evaluation, industrial mineral resources, origin of ore-forming fluids in sedimentary environments, fluid inclusions, stable isotopes, salt dome cap rock formation, surficial processes and earth resource formation, high resolution X-ray computed tomography applications to ...
Sharon  Mosher

Sharon Mosher

Structural petrology, field-oriented structural geology, the evolution of complexly deformed terranes, strain analysis, deformation mechanisms, the interaction between chemical and physical processes during deformation
Douglas  Smith

Douglas Smith

Research on mantle evolution using tools of mineralogy, petrology, and geochemistry.
Paul L Stoffa

Paul L Stoffa

Multichannel seismic acquisition, signal processing, acoustic and elastic wave propagation, modeling and inversion of geophysical data

Postdocs

David C Bolton

Earthquakes,Fault Mechanics, Rock Deformation, Ultrasonic Monitoring
Rudra N Chatterjee

Rudra N Chatterjee

Antoniette Greta  Grima

Antoniette Greta Grima

Mahdi  Haddad

Mahdi Haddad

geomechanics of induced seismicity; geomechanical simulation of multiple-stage hydraulic fracture propagation using cohesive zone model and extended finite element method; numerical simulation of multiphase flow in porous media; development of computational fluid dynamics codes using finite volume, finite element (classic and Streamline Upwind Petrov-Galerkin), and smoothed particle hydrodynamics methods.
Nadine  Igonin

Nadine Igonin

Seismology, microseismic, induced seismicity
Caroline  Seyler

Caroline Seyler

Srisharan  Shreedharan

Srisharan Shreedharan


Research Scientists

James A Austin

James A Austin

Stratigraphic evolution of a wide range of marine and lacustrine environments around the world

Oliver Duffy

Salt tectonics; Basin analysis; Fault networks; Normal Faulting; Salt-sediment interaction
Ian J Duncan

Ian J Duncan

Expertise in geomechanic and geochemistry applied to: risks associated with CO2 sequestration; hydraulic fracturing for shale gas production; environmental impact of hydraulic fracturing; and the water-energy nexus. Current research focuses on the scientific, environmental and public policy aspects of unconventional natural gas production, the water-energy nexus, and carbon capture and ...
Peter  Eichhubl

Peter Eichhubl

Fault and fracture mechanics, reservoir geomechanics, diagenesis and low-temp. geochemistry, fluid flow and transfer processes in sedimentary basins, deformation mechanisms of the upper crust, structural control of mass and heat transfer in sedimentary basins, effects of chemical mass transfer on the mechanical and hydraulic behavior of fractures and faults, chemical ...
Andras  Fall

Andras Fall

Fluids in diagenetic and hydrothermal systems, Fluid inclusions, Fractures, Structural diagenesis
Julia F Gale

Julia F Gale

Natural fracture / vein systems in sedimentary and metamorphic rocks; structural geology; tectonics

Shuoshuo Han

Peter H Hennings

Peter H Hennings

Peter Hennings expertise is applied structural geology and geomechanics for which his interests are broad spanning structural systems analysis, subsurface interpretation, fault system characterization, fractured reservoir characterization, reservoir geomechanics, and subsurface fluid flow. Dr. Hennings is known as an integrator which is vital for the study of induced seismicity for ...
Michael R Hudec

Michael R Hudec

Salt tectonics, 3-D computer modeling, kinematic models for evolution and growth of salt structures, structural geology, cross-section restoration and balancing, seismic interpretation
Stephen E Laubach

Stephen E Laubach

Structural diagenesis, structural geology, fracture analysis, fluid inclusion and cathodoluminescence studies, rock mechanics, mechanical and fracture stratigraphy, hydrocarbon exploration and development in deep and/or structurally complex areas, tight gas sandstone, coalbed methane, shale gas; geothermal, geologic aspects of hydraulic fracturing, application of borehole-imaging geophysical logs to stress and fracture ...

Timothy F Lawton

Lawrence A Lawver

Lawrence A Lawver

Marine geophysics, plate tectonics, magnetics, gravity, heat flow, seismic studies, paleogeographic reconstructions of Gondwana, the Polar Regions, East Asia, and the Western Pacific
Kitty L Milliken

Kitty L Milliken

Petrography and geochemistry of siliciclastic rocks; diagenesis; electron microbeam methods: X-ray mapping, cathodoluminescence imaging; micro-scale reservoir characterization
Maria-Aikaterini  Nikolinakou

Maria-Aikaterini Nikolinakou

Maria-Katerina Nikolinakou is currently a Research Scientist at the Bureau of Economic Geology, Jackson School of Geosciences, at the University of Texas at Austin. Her research focuses on understanding stress and pore pressure in complex geologic systems, including salt systems and accretionary prisms. She studies the behavior of geologic materials ...
Krista M Soderlund

Krista M Soderlund

Astrobiology, Cryosphere, Geophysical Fluid Dynamics, Magnetohydrodynamics, Planetary Science
Frederick W Taylor

Frederick W Taylor

Tectonic geomorphology, stratigraphy, and paleogeodesy/paleoseismology at convergent plate margins Paleoclimate, fossil corals as a proxy for past sea-surface temperatures. Corals as recorders of relative sea level for vertical tectonics and sea-level history.
Estibalitz  Ukar

Estibalitz Ukar (Theme Lead)

Fracture analysis and structural diagenesis Brittle structural petrology Fractured carbonate rocks Tectonics and metamorphism of subduction zones
Harm J Van Avendonk

Harm J Van Avendonk

Van Avendonk is an active-source seismologist who specializes in the acquisition and inversion of seismic refraction data on land and at sea. Often these seismic refraction data are used for a tomographic inversion. The resultant seismic velocity models help us to interpret the composition of the Earths crust and ...

Laura Wallace

Crustal deformation, GPS/Geodesy, active plate boundary processes, subduction tectonics, geohazards
Xiaohua  Xu

Xiaohua Xu


Research Staff

Gillian Apps

Deepwater stratigraphy and sedimentology The interaction betwwen structural and depositional processes Engines of slope processes
Richard J Chuchla

Richard J Chuchla

Graduate studies were focused on igneous processes, magmatism and related formation of ore deposits. Professional career included exploration for base and precious metal ore deposits, coal assessment and development, and research, exploration and development in the upstream sector of the oil and gas business. Managerial positions led to development of ...

Sara Elliott

Staci L Loewy

Staci L Loewy

Nathaniel R Miller

Nathaniel R Miller

Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate [link: http://www.jsg.utexas.edu/news/2018/05/new-research-suggests-that-dawn-of-plate-tectonics-could-have-turned-earth-into-snowball/]
Ian O Norton

Ian O Norton

Plate tectonics, structural evolution of continental margins, reconciliation of observations from structural geology with regional tectonics

Francis Peel

Salt Tectonics Gulf of Mexico Seismic Interpretation Salt Deposition RIsk and probability in exploration Fold and Thrust Belts Deepwater systems
Robert M Reed

Robert M Reed

Microstructural analysis of rocks, particularly small-scale deformation structures and pores in mudrocks.
Lisa D Stockli

Lisa D Stockli

U-Pb Geochronology and trace element analysis by LA-ICP-MS; TIMS and SIMS techniques
Christopher K Zahm

Christopher K Zahm

Reservoir characterization, flow modeling in fractured reservoirs, porosity-permeability evolution

Graduate Students

Rawan Alasad

Rawan Alasad

I study the sedimentary record, surficial processes, tectonic relief and catchment evolution that occurs during rifting.
Wade L Aubin

Wade L Aubin

I study Volcanology and Igneous Petrology. My primary research interests are explosive volcanic eruptions and igneous petrogenesis in long-lived volcanic provinces.

Rachel Blandon

Sarah  Brooker

Sarah Brooker

Kristina  Butler

Kristina Butler

I am a field-based sedimentologist and geochronologist who uses sedimentary basin records to understand the drivers and consequences of mountain building. My current research focus is sediment routing and foreland basin evolution of Northern Patagonia. I combine a variety of provenance techniques (sandstone petrography, detrital zircon U-Pb, Lu-Hf and trace ...
Amanda Z Calle

Amanda Z Calle

My research is focused on the Cenozoic sedimentary, structural and exhumational history of the Eastern Cordillera to modern Chaco foreland basin in southern Bolivia. A multidisciplinary approach of source-to-sink, geochronology, low-temperature thermochronology and structural mapping will be used. Inherited pre-Andean structures and their response to contractional settings will also be ...
Edward  Clennett

Edward Clennett

I am a third year PhD candidate in the geodynamics and tectonics group at UT Austin. I am interested in plate tectonic reconstruction models, and how we can use plate driving forces to better constrain past plate motion and continental deformation. Plate motion and deformation are modelled through time using ...
Ethan M Conrad

Ethan M Conrad

My research interests include structural geology, tectonics, fault mechanics, and tectonic geomorphology. I use field observations, thermochronology and laboratory experiments to study how landscapes deform in response to tectonic and climatic forces. The field component of my research is focused on the Cenozoic evolution of the Northern Caribbean Plate Boundary. ...
Rodrigo Correa

Rodrigo Correa

Scott A Eckley

I am interested in studying the petrogenesis of igneous rocks, especially basaltic meteorites from Mars (shergottites) using a multi-modal analytical approach, from macroscale 3D observations using X-ray computed tomography to high-resolution in-situ geochemical measurements using various microanalytical techniques. I also work full-time at NASA Johnson Space Center managing the X-ray ...
Max Ehrenfels

Max Ehrenfels

The aim of my research is to improve established methods and develop new methods to extract thermal history information using the (U-Th)/He decay system in zircon. An initial project will produce new mineral standards to overcome analytical shortcomings in the currently used laser ablation (U-Th)/He protocol. This will ...

Zachary Foster-Baril

Hector K Garza

Hector K Garza

My research interests encompass a broad range of approaches incorporating geochemistry, geochronology, paleontology, stratigraphy, and sedimentology to understand major geologic and evolutionary events in Earth's history. Currently, I am researching the precise timing of early land colonization during the Ordovician, Silurian, and Devonian periods. I am also investigating the potential ...
Andrew Gase

Andrew Gase

I use seismic and electromagnetic geophysical methods to probe the earth at lithospheric and environmental scales. My recent interests include subduction zone structure, volcanic geomorphology, and magmatic-tectonic interactions.

Hoss H Hostettler

Scarlette  Hsia

Scarlette Hsia

My PhD Research is focused on constraining the timing and amplitude of Marine Isotope Stage 5a deposits across the Western Atlantic Ocean. My primary interests include carbonate facies mapping, sedimentology, paleo-sea level reconstruction, stratigraphy, and STEM outreach. I am an English as a Second Language (ESL) and first generation PhD ...

Shuhua Hu

Christopher S Linick

I am a geophysicist with roots in geodesy. I study inverse problems at the intersection of hydrology and geodesy; for instance, currently I am working to quantify snowpack across the Sierra Nevada of California from dense GPS observations of crustal deformation and other data types. I also work with gravimeters, ...

Chujie Liu

Joshua Malone

Joshua Malone

I am a field-based sedimentologist and geochronologist who uses sedimentary basin records to understand drivers and consequences of changes in tectonism and climate along convergent margins. My PhD research focuses on the key processes controlling unconventional reservoir development within mixed carbonate and siliciclastic systems in southern California.
Nicholas F Meszaros

Nicholas F Meszaros

I am currently researching how magma storage conditions changed leading up to the most recent (1.23 Ma) caldera-forming eruption of the Valles magmatic system in the Jemez Mountains of northern New Mexico. Through a combination of phase equilibrium experiments, melt inclusion geochemistry, geothermometry/barometry, and Ce-in-zircon oxybarometry I am establishing pre-eruptive ...

Nicholas J Montiel

Sean  O'Donnell

Sean O'Donnell

My research interests are in the areas of volcanology and igneous petrology. I am currently researching aspects of the caldera forming eruption of Crater Lake, OR. I am using field and laboratory methods to understand volcanologic and petrologic processes that occurred during different stages of the eruption, and determining how ...
Simone  Puel

Simone Puel

I am a Ph.D. candidate at The University of Texas at Austin - Jackson School of Geosciences and a Graduate Research Assistant at the Institute for Geophysics. My current research focuses on developing a forward and inverse modeling framework for earthquake deformation problems using adjoint-based optimization methods, such as ...
Fernando  Rey

Fernando Rey

My research focus is to link the stratigraphic record with tectonic processes using geochronology and geochemical signatures. I am currently working on projects in southern Patagonia (Late Jurassic-Early Cretaceous Rocas Verdes Back-arc basin) and Japan (Neogene opening of the Sea of Japan).I am also interested in the dispersal of ...

Graduate Student Position in Mineral Physics Lab

Graduate
The mineral physics lab at the Department of Geological Sciences, Jackson School of Geosciences, the University of Texas at Austin invites applications for graduate student positions towards a Master's or Ph.D. degree in mineral physics. The Jackson School of Geosciences has exceptionally well-funded research programs and offers a number of scholarships to support graduate students for an extended period of time. Candidates with strong background and/or interest in physics (solid state physics), math, and geophysics/geochemistry are strongly encouraged to apply. Our mineral physics research programs focuses on high pressure-temperature experimental studies on materials properties using synchrotron X-ray and optical spectroscopies in a diamond anvil cell. Information about the graduate student programs at the Jackson School is available at: http://www.jsg.utexas.edu/. Please contact Dr. Jung-Fu Lin at afu@jsg.utexas.edu for further information.
Posted by: Jung-Fu Lin

Innovative Detrital Provenance Studies - Double Dating PLUS

Graduate
A major thrust of my current research the development and application of more comprehensive isotopic detrital provenance tools. U-Pb on zircon is clearly the big work horse, but only goes so far and sometimes yields "no" useful info, e.g., if the source of the sediment is mostly recycled sediment. We have extensively pursued double dating of zircons by U-Pb and He, as zircon He ages yield very interesting insights into the thermal and tectonic history of the source terrane; often yielding very different insights than crystallization ages. The combination is powerful, but I think we can take things so much farther by combining double dating with other constrains. People have tried fission track (not precise enough), Hf/Hf (to get mantle separation model ages), etc., but what we want to do and are working on is really Double Dating ++, combining zircon U-Pb-He dating with a variety of other geochemical aspects to more comprehensive understand detrital provenance and improve paleo-tectonic reconstructions. For example, trace-element thermometry (Ti in zirc), REE on zircon (met vs mag origin), Hf/Hf (see above), oxygen isotopes, etc. and also to develop rutile in an analogous manner (e.g., Zr in rut thermometry, Cr/Nb ratio (mafic vs granulitic), REE, etc.). The sky is the limit and what can learn so much. The issue in part it, how much can a single grain tell us before it's gone? The project sounds very laboratory oriented, but it's really a combination of field and lab work. We have identified a few possible case study areas, e.g., Morocco; great exposures, long-lived and preserved record of basin deposition since the Precambrian. My group is already working on some case studies in NW Himalayas, the N & S Pyrenees, the Sevier FTB, Permian Basin and other foreland basin. New projects include provenance studies along rifted and passive continental margins such the Gulf of Mexico, the central Atlantic Margins in Canada, USA, Portugal, and Morocco.
Posted by: Daniel Stockli

Research in structural geology and diagenesis

Graduate
Fundamental and applied research on fractures, particularly as these studies apply to petroleum reservoirs, is conducted under the auspices of the Fracture Research and Application Consortium at The University of Texas at Austin. The academic program of research, mentoring and teaching is led by staff of the Bureau of Economic Geology, the Department of Petroleum & Geosystems Engineering and the Department of Geological Sciences. Students in the Energy & Earth Resources Graduate Program also participate in FRAC sponsored research projects. For further information on opportunities for fracture studies within the program see the FRAC pages on opportunities in Geology, Petroleum Engineering, Geophysics, and Energy Economics. FRAC welcomes Visiting Scientists from industry and from other academic institutions. Contact Steve Laubach for more information about these opportunities. A key part of the FRAC academic program is the Structural Diagenesis Initiative, a new teaching and mentoring perspective on interacting mechanical and chemical processes at high crustal levels in the Earth. For more information on the initiative see the Structural Diagenesis Initiative web site. If you are a prospective student, please see the admissions information on the Petroleum & Geosystems Engineering or Jackson School of Geosciences web sites.
Posted by: Stephen Laubach

Laser ablation (U-Th)/He and 4He/3He dating of zircon and apatite

Graduate
Seeking motivated Ph.D. students interested in noble gas geo-thermochronology and geochemistry to pursue project in method development and application of laser ablation (U-Th)/He dating and depth profile 4He/3He thermochronometry of zircon and apatite. Our laboratory has a dedicated noble gas extraction line with a SFT magnetic sector noble gas mass spectrometer and dedicated Excimer Laser. The lab also houses two Element2 magnetic sector single collector ICP-MS instruments with a second Excimer laser as well as a state-of-the-art Bruker optical interferometric microscope. The project will develop laser ablation methodology to recover detailed thermal histories from apatite and zircon by laser ablation (U-Th)/He and 4He/3He dating as well as comparison to step-heating fractional loss experiments.
Posted by: Daniel Stockli

LA-ICP-MS single-pule U-Pb depth profiling recovery of thermal histories

Graduate
Seeking motivated Ph.D. students interested in in-situ geochronology to pursue project in method development and application of laser ablation continuous mode or single-pulse U-Pb LA-ICP-MS geo-thermochronology as well as trace element speedometry to constrain thermal history or lower and middle crustal rocks. The UTChron Geo- and Thermochronometry laboratory houses two Element2 magnetic sector single collector ICP-MS instruments with a large-volume cell Excimer laser system, ideally suited for depth profiling and U-Pb and trace element split stream analysis. The laboratory also houses a Bruker optical interferometric microscope to control laser ablation rates as well as a Raman system. The focus of applications is on method development and application to the exhumation of middle and lower crustal rocks in rifted margin settings.
Posted by: Daniel Stockli

Student Opportunities

Graduate
I am always interested in adding motivated new students to my Earthquake Science research team in the Jackson School. For prospective graduate students, please review the application guidelines and expectations listed on the Jackson School website (see orange link above). We do not accept "off track" admissions in the Jackson School, so the standard Fall application season is your best bet. I strongly encourage prospective students to reach out to me via email during this time with your CV and research interests. I highly value diversity in thought and experience, and students from underrepresented groups are strongly encouraged to apply.
Posted by: Daniel Trugman

PhD/MS opportunities

Graduate
My group welcomes new students with strong motivations on understanding how solid Earth and planets operate and its impacts on shaping habitable surface environments. Prospective students are expected to have a STEM background. If these describe you, feel free to contact me through email for position openings in my group.
Posted by: Chenguang Sun

Ph.D. Project Greece Petrochronology and tectonic evolution of the Cycladic Blueschist Complex (University of Texas at Austin)

Graduate - 4-5 years
Ph.D. project available in the Stockli Research Group and UTChron Laboratory of the Dept of Geological Sciences (https://www.jsg.utexas.edu/dgs/) at the Jackson School of Geosciences (https://www.jsg.utexas.edu/) of The University of Texas at Austin. The project focuses on the tectonic and metamorphic evolution of the Cycladic Blueschist Complex in central and northern Greece to constrain the tectonic and metamorphic evolution of one of the worlds best-exposed subduction complexes. The project entails field mapping and structural analysis with strong emphasis on accessory mineral (zircon, apatite, titanite) LA-ICP-MS petrochronology, microanalytical mineral imaging and elemental and isotopic mapping, and low-temperature (U-Th)/He thermochronometry of the Cycladic Blueschist Complex in central and north-eastern Greece with the goal of constraining the pre-subduction, subduction, and exhumation history of Cycladic blueschists and understanding subduction underplating within the Hellenic subduction complex. The project is a collaboration with the University of Athens (Prof. Soukis) and we are seek an outstanding, motivated, and independent PhD student with interested in combining field and cutting-edge laboratory work. Interested candidates should contact Dr. Daniel Stockli with any inquiries and questions regarding the project or application procedures. For more information regarding the Stockli Research Group (https://www.jsg.utexas.edu/stockli-group/), the UTChron Laboratory (https://www.jsg.utexas.edu/utchron-lab/) please see these website links. Applications are due January 1, 2022, and information about applying to our program is online using the online application from the Graduate School of the University of Texas at Austin. Applications must be complete in the Graduate and International Admissions Center (GIAC) by the appropriate deadline. ALL ITEMS must be received by the deadline. We currently do not require submission of a GRE score for the application for the Fall of 2022. International applicants do require submission of TOEFL scores. For general admissions questions, please see https://www.jsg.utexas.edu/education/graduate/admissions/ The University of Texas at Austin is one of the most diverse campuses in the nation. With nearly 52,000 students from all 50 states and 123 countries, we take seriously our motto: What Starts Here Changes the World. We boast 18 colleges and schools with over 300 degree programs, representing a diversity of thought and scholarship that is staggering. The Dept. of Geological Sciences at UT seeks to foster an environment that promotes diversity, equity, and inclusion where faculty, students, and staff feel valued and welcome regardless of race, ethnicity, sexual orientation, gender identity, religion, nationality, veteran status, socio-economic status, political beliefs, physical or cognitive ability, and age.
Posted by: Daniel Stockli

Research Triassic vertebrates (Paleontology)

Undergraduate
Undergraduates interested in Triassic vertebrates of Texas and the Colorado Plateau!! Get involved with new research including digital segmentation of CT-scanned specimens from Petrified Forest National Park and the University of Texas Vertebrate Paleontology Collections, preparation of vertebrate fossils collected by the WPA in the early 1900s, and photographic documentation of those materials. Opportunities exist for students to develop independent research related to the main questions associated with this project. Projects begin in the Fall, 2022 semester. Interested students should contact Will Reyes (will_reyes@utexas.edu) and Chris Bell (cjbell@jsg.utexas.edu).
Posted by: Christopher Bell

Research Phillips Cave fossils (Paleontology)

Undergraduate
Dedicated, enthusiastic undergraduate student(s) sought to help work on fossils from Phillips Cave in Crockett County, Texas. Student(s) will help with screen-washing, sorting, identifying, and curating vertebrate fossils from Ice-Age sediments in the cave. Students will learn aspects of the anatomy of the vertebrate skeleton as they contribute to broadening our understanding of vertebrate paleobiogeography on the Edwards Plateau. The project is under way and volunteers can be brought on board immediately. Interested students should contact Stacie Skwarcan (sskwarca@utexas.edu) and Chris Bell (cjbell@jsg.utexas.edu).
Posted by: Christopher Bell

Center for Computational Geosciences & Optimization

The Center for Computational Geosciences and Optimization addresses modeling of the solid and fluid earth systems, with emphasis on large scale simulation and inversion on supercomputers. Problems of interest include forward and inverse modeling of regional and global seismic wave propagation, mantle convection, atmospheric and subsurface contaminant transport, ocean dynamics, and flow in porous media. Research in the CCGO is conducted jointly with collaborators from the Jackson School of Geosciences, other ICES centers, the College of Engineering, the Department of Computer Sciences, other universities including Carnegie Mellon, Penn, MIT, Columbia, and Emory, and Sandia National Labs. Related inverse and optimization problems in the mechanical and biomedical engineering sciences are also being pursued.

Center for Integrated Seismicity Research

The TexNet Seismic Observatory and the Center for Integrated Seismicity Research (CISR) at The University of Texas at Austin are multidisciplinary, trans-college research centers managed by the Bureau of Economic Geology (BEG) and are two vital parts of a whole. The overall goals of the TexNet-CISR collaborative are to collect high-quality data on earthquakes in Texas and conduct fundamental and applied research to better understand naturally occurring and potentially induced earthquakes and the associated risks. Our thoroughly integrated research program is studying the subsurface processes that may influence seismicity that will lead to better quantification of the associated hazards and risks to the citizens and infrastructure of Texas. A primary application of the data and research is to improve standards of practice resulting in the mitigation of seismicity that may stem from industrial activity. The highest priority is fact-based communication with stakeholders and rapid response to public concerns regarding seismicity.

TexNet Seismic Monitoring Program

In its 84th and 85th legislative sessions, the Texas Legislature tasked the Bureau with helping to locate and determine the origins of earthquakes in our state and, where possibly caused by human activity, with helping to prevent earthquakes from occurring in the future. The TexNet Seismic Monitoring Program was established to accomplish these goals.

Fracture Research and Application Consortium

The Fracture Research and Application Consortium (FRAC) is an alliance of scientists from the Bureau and the departments of Petroleum and Geosystems Engineering and Geological Sciences that seeks fundamental understanding of fractures and fracture processes dedicated to conquering the challenges of reservoir fractures.

High-Resolution X-ray Computed Tomography Facility

The High-Resolution X-ray Computed Tomography Facility at The University of Texas at Austin (UTCT) is a national shared multi-user facility supported by the Instrumentation and Facilities Program of NSF's Earth Sciences (EAR) directorate. UTCT offers scientific researchers across the earth, biological and engineering sciences access to a completely nondestructive technique for visualizing features in the interior of opaque solid objects, and for obtaining digital information on their 3D geometries and properties.

Network for Earthquake Engineering Simulation

The George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) is a national, networked, simulation resource that includes geographically-distributed, shared-use, next-generation experimental research Equipment Sites built and operated to advance earthquake engineering research and education through collaborative and integrated experimentation, theory, data archiving, and model-based simulation. The goal of NEES is to accelerate progress in earthquake engineering research and to improve the seismic design and performance of civil and mechanical infrastructure systems through the integration of people, ideas, and tools in a collaboratory environment. Open access to and use of NEES research facilities and data by all elements of the earthquake engineering community, including researchers, educators, students, practitioners, and information technology experts, is a key element of this goal.

PLATES

A program of research into plate tectonics and geologic reconstructions, the PLATES Project is supported by an industry consortium. Our primary objectives are to model past and present plate movement, compile comprehensive databases, develop plate motion computer software and apply plate motion models.

Structural Diagenesis Initiative

Structural diagenesis is a new perspective on interaction of mechanical and chemical processes at high crustal levels in the Earth. SDI promotes the growth of this new discipline.

Texas Consortium for Computational Seismology

The mission of the Texas Consortium for Computational Seismology is to address the most important and challenging research problems in computational geophysics as experienced by the energy industry while educating the next generation of research geophysicists and computational scientists.

TexNet Seismic Monitoring Program

In the 84th Legislative Session, the Texas Legislature tasked us with helping to locate and determine the origins of earthquakes in our State, and, where they may have been caused by human activity, helping to prevent them from occurring in the future. We have established the TexNet earthquake monitoring program to accomplish these goals, and we plan to place earthquake monitoring stations across Texas to gather information about and study these events as they occur. We want to help inform Texas citizens so that they can keep their property safe from the impact of earthquakes.

Posted by Marcus Gary
Photos of research of the Sistema Zacaton karst area