Solid Earth & Tectonic Processes

From plate tectonic and deformation processes to mantle evolution and dynamics and melt generation and volcanism, our research spans the range of tectonics and deep crustal processes.

Research in the Solid Earth & Tectonic Processes theme focuses on the following subthemes:

Solid Earth & Tectonic Processes News

More News

Faculty & Research Scientists

James A Austin

James A Austin

Stratigraphic evolution of a wide range of marine and lacustrine environments around the world
Jaime D Barnes

Jaime D Barnes

Stable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes
Thorsten  Becker

Thorsten Becker

mantle dynamics; fault system dynamics; structural seismology; numerical modeling
Elizabeth J Catlos

Elizabeth J Catlos

Can also see https://www.catlos.work/ My primary research focus is [bold]geochemistry[/bold], and how the fundamentals of chemistry (mineral reactions, radiogenic and stable isotopes, major and trace elements) can be and are used to understand what the Earth was like in the past. In this, I have interests that span a broad range of range of plate boundary processes and laboratory approaches. Many ancient fault systems are clues to determine the evolution ...
Gail L Christeson

Gail L Christeson

Marine seismology, mid-ocean ridge structure and emplacement processes, oceanic crustal structure, ocean-bottom seismology, seismic refraction
Ian W Dalziel

Ian W Dalziel

Tectonics, geodynamics, geography of ancient times, plate reconstructions, structural geology

Oliver Duffy

Salt tectonics; Basin analysis; Fault networks; Normal Faulting; Salt-sediment interaction
Ian J Duncan

Ian J Duncan

Expertise in geomechanic and geochemistry applied to: risks associated with CO2 sequestration; hydraulic fracturing for shale gas production; environmental impact of hydraulic fracturing; and the water-energy nexus. Current research focuses on the scientific, environmental and public policy aspects of unconventional natural gas production, the water-energy nexus, and carbon capture and storage. He has a particular interest in risk analysis, decision making, and legal/regulatory issues related to fracing, CO2 sequestration, CO2-EOR, and energy production.
Peter  Eichhubl

Peter Eichhubl

Fault and fracture mechanics, diagenesis and low-temp. geochemistry, fluid flow and transfer processes in sedimentary basins, deformation mechanisms of the upper crust, structural control of mass and heat transfer in sedimentary basins, effects of chemical mass transfer on the mechanical and hydraulic behavior of fractures and faults, chemical interaction between fluids and minerals
Claudio  Faccenna

Claudio Faccenna

Topics: subduction tectonic and morphological evolution of convergent margin, evolution of orogenic belt and exhumation of deep metamorphic rocks, dynamic topography, trench migration and back-arc deformation, mantle convection, volcanism and fluid circulation in the crust. Tools: Structural geology and geomorphology, experimental / numerical geodynamic modelling, paleomagnetism, seismic lines interpretation. Field sites: Tethyan belt: Mediterranean to the Middle East (Morocco, Spain, Italy, Greece, Turkey, Iran), Himalaya (Pakistan), Andes (Argentina-Colombia), Antarctica.
Andras  Fall

Andras Fall

Fluids in diagenetic and hydrothermal systems, Fluid inclusions, Fractures, Structural diagenesis
Naiara  Fernandez Terrones

Naiara Fernandez Terrones

Salt tectonics, Seismic Interpretation, Structural Modeling, Numerical Modeling,
Peter P Flaig

Peter P Flaig

Research Focus: Cretaceous Western Interior Seaway of North America, North Slope-Alaska, Central Transantarctic Mountains-Antarctica, Canada,- Clastic sedimentology - Fluvial sedimentology - Paleoenvironmental reconstruction of continental to shallow-marine systems using sedimentology, stratigraphy, architecture, and ichnology in outcrop studies - Photography and high-resolution imagery (e.g. LiDAR, GigaPan) of clastic systems - Paleopedology - Remote logistics.
Julia F Gale

Julia F Gale

Natural fracture / vein systems in sedimentary and metamorphic rocks; structural geology; tectonics
James E Gardner

James E Gardner

Volcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies
Omar  Ghattas

Omar Ghattas

Computational geoscience and engineering, simulation and optimization of complex solid, fluid, and biomechanical systems, inverse problems, optimal design, and optimal control
Stephen P Grand

Stephen P Grand

Seismic imaging of Earth's mantle, tomography, dynamics of flow in the mantle, regional seismic studies
Sean S Gulick

Sean S Gulick

Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events Marine geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and submersibles
Mark A Helper

Mark A Helper

Dr. Helper is a field geologist, a generalist whose interests span igneous and metamorphic petrology, structural geology, tectonics, mineralogy and planetary field geology. His current research explores geochemical and isotopic similarities of Proterozoic and Archean crust in East Antarctica and the southwestern U.S., the Precambrian geology of Texas, and the origin of epidote blueschists in the Klamath Mountains of northern California. Recent senior honors theses under his supervision have examined the mineralogy of Texas ...
Peter H Hennings

Peter H Hennings

Field and subsurface structural geology; seismic structural interpretation and analysis; characterization and hydraulic modeling of fractured and compartmentalized reservoirs; reservoir geomechanics; induced seismicity; fault seal analysis; thrust belt kinematics; hydrocarbon exploration and production; geology of Trans-Pecos Texas, Wyoming, and western Montana.
Marc A Hesse

Marc A Hesse

Multiphase flow in porous media, geomechanics, numerical simulation, mathematical, modeling, reactive transport, magma dynamics.
Brian K Horton

Brian K Horton

Tectonics of sedimentary basins, evolution of orogenic systems, sediment provenance and routing systems, nonmarine depositional processes.
Michael R Hudec

Michael R Hudec

Salt tectonics, 3-D computer modeling, kinematic models for evolution and growth of salt structures, structural geology, cross-section restoration and balancing, seismic interpretation
Joel P Johnson

Joel P Johnson

Process geomorphology, feedbacks between channel morphology and hydrology and sediment transport, landscape sensitivity to climate and lithology, bedrock river erosion, flash floods, arroyo erosion, canyon formation, environmental monitoring and sensor networks, laboratory flume experimentation, numerical modeling, tsunami sediment transport and deposition.
Richard A Ketcham

Richard A Ketcham

High-resolution X-ray computed tomography, CT scanning, 3D image analysis, fission-track dating, thermochronology, structural geology, tectonics, digital morphology, trabecular bone
John C Lassiter

John C Lassiter

Earth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/mantle boundary
Stephen E Laubach

Stephen E Laubach

Structural diagenesis, structural geology, fracture analysis, fluid inclusion and cathodoluminescence studies, rock mechanics, mechanical and fracture stratigraphy, hydrocarbon exploration and development in deep and/or structurally complex areas, tight gas sandstone, coalbed methane, shale gas; geologic aspects of hydraulic fracturing, application of borehole-imaging geophysical logs to stress and fracture evaluation, structural evolution of North American Cordillera, fracture history of NW Scotland, regional fracture studies Argentina.
Luc L Lavier

Luc L Lavier

Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction

Timothy F Lawton

Lawrence A Lawver

Lawrence A Lawver

Marine geophysics, plate tectonics, magnetics, gravity, heat flow, seismic studies, paleogeographic reconstructions of Gondwana, the Polar Regions, East Asia, and the Western Pacific
Jung-Fu  Lin

Jung-Fu Lin

Mineral physics, physics and chemistry of planetary materials, solid-Earth geophysics and geochemistry, high-pressure diamond anvil cell, X-ray and laser spectroscopy
Staci L Loewy

Staci L Loewy

Nathaniel R Miller

Nathaniel R Miller

Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate [link: http://www.jsg.utexas.edu/news/2018/05/new-research-suggests-that-dawn-of-plate-tectonics-could-have-turned-earth-into-snowball/] [/link]
Kitty L Milliken

Kitty L Milliken

Petrography and geochemistry of siliciclastic rocks; diagenesis; electron microbeam methods: X-ray mapping, cathodoluminescence imaging; micro-scale reservoir characterization
Sharon  Mosher

Sharon Mosher

Structural petrology, field-oriented structural geology, the evolution of complexly deformed terranes, strain analysis, deformation mechanisms, the interaction between chemical and physical processes during deformation
Maria-Aikaterini  Nikolinakou

Maria-Aikaterini Nikolinakou

Maria-Katerina Nikolinakou is currently a Research Scientist at the Bureau of Economic Geology, Jackson School of Geosciences, at the University of Texas at Austin. Her research focuses on understanding stress and pore pressure in complex geologic systems, including salt systems and thrust belts. She studies the behavior of geologic materials under high stress levels and complex stress paths. She develops applied workflows for pressure prediction in exploration settings. Maria is a Civil/Geotechnical Engineer. She ...

Phil Orlandini

Ductile deformation; petrology; machine learning; SEM; EBSD; EPMA; EDS; field geology & structural geology
Timothy B Rowe

Timothy B Rowe

Vertebrate paleontology, evolution and development of the vertebrate skeleton, phylogenetic systematics, the early history of mammals and their extinct relatives among Synapsida, the history of birds and their extinct relatives among Dinosauria, the history of other amniotes, high-resolution X-ray computed tomography, CT scanner, DigiMorph, informatics
Mrinal K Sen

Mrinal K Sen

Seismic wave propagation including anisotropy, geophysical inverse problems, earthquakes and earth structure, applied seismology, petroleum exploration including 4D seismology
Timothy M Shanahan

Timothy M Shanahan

Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific stable isotope analysis
Krista M Soderlund

Krista M Soderlund

Astrobiology, Cryosphere, Geophysical Fluid Dynamics, Magnetohydrodynamics, Planetary Science
Daniel  Stockli

Daniel Stockli

Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Frederick W Taylor

Frederick W Taylor

Tectonic geomorphology, stratigraphy, and paleogeodesy/paleoseismology at convergent plate margins Paleoclimate, fossil corals as a proxy for past sea-surface temperatures. Corals as recorders of relative sea level for vertical tectonics and sea-level history.
Nicola  Tisato

Nicola Tisato

Experimental rock physics and rock mechanics. Digital Rock Physics. Speleology. Seismic wave attenuation, Physical properties of rocks, Wave-Induced-Phenomena, Genesis of caves and speleothems, Reservoir characterization, Nuclear waste management.
Daniel  Trugman

Daniel Trugman

Estibalitz  Ukar

Estibalitz Ukar (Theme Lead)

Fracture analysis and structural diagenesis Brittle structural petrology Fractured carbonate rocks Tectonics and metamorphism of subduction zones
Harm J Van Avendonk

Harm J Van Avendonk

Van Avendonk is an active-source seismologist who specializes in the acquisition and inversion of seismic refraction data on land and at sea. Often these seismic refraction data are used for a tomographic inversion. The resultant seismic velocity models help us to interpret the composition of the Earths crust and mantle, the geometry of sedimentary basins, and the structure of plate boundaries.

Laura Wallace

Crustal deformation, GPS/Geodesy, active plate boundary processes, subduction tectonics, geohazards

Postdoctoral Researchers

Owen A Callahan

Owen A Callahan

Rudra N Chatterjee

Federico Galster

Tectonic; Geochronology, Stratigraphy, Biochronology
Mahdi  Haddad

Mahdi Haddad

geomechanics of induced seismicity; geomechanical simulation of multiple-stage hydraulic fracture propagation using cohesive zone model and extended finite element method; numerical simulation of multiphase flow in porous media; development of computational fluid dynamics codes using finite volume, finite element (classic and Streamline Upwind Petrov-Galerkin), and smoothed particle hydrodynamics methods.
Zachary T Sickmann

Zachary T Sickmann

Basin Analysis, Convergent Margin Tectonics, Source-to-Sink Sediment Dispersal, Provenance Analysis, Sedimentology in the Anthropocene
Gaia  Stucky de Quay

Gaia Stucky de Quay

Planetary Surface Processes; Fluvial Geomorphology; Erosion and Uplift; Land-Climate Interactions; Early Mars; Terrestrial Analogs; Volcanic Islands; Geochronology.

Adjunct/Emeritus Faculty​ & Research Scientists

John M Sharp

John M Sharp

Hyrdogeology; flow in fractured rocks; thermohaline free convection; fracture skin effects; regional flow in carbonate rocks; hydrology of arid and semi-arid zones; subsidence and coastal land loss; effects of urbanization; alluvial aquifers; hydrogeology of sedimentary basins;hydrological processes in ore deposit formation; and hydrogeophysics.
Douglas  Smith

Douglas Smith

Research on mantle evolution using tools of mineralogy, petrology, and geochemistry.
James T Sprinkle

James T Sprinkle

Invertebrate paleontology; evolutionary biology; fossil and living echinoderms; echinoderm systematics; Paleozoic marine communities and ecosystems; paleoecology; crinoids; blastoids; rhombiferans; eocrinoids; parablastoids; blastozoans; edrioasteroids; edrioblastoids; starfish; stylophorans; ctenocystoids; helicoplacoids; Cambrian evolutionary fauna; Paleozoic evolutionary fauna; Ordovician radiation; Cambrian explosion; environment & earth science
Ronald J Steel

Ronald J Steel

Dr. Steel's research is aimed at using clastic sedimentology to address problems in basin analysis, dynamic stratigraphy and clastic reservoirs. I am particularly interested to decipher the signatures of tectonics, climate, sea level change and sediment supply in stratigraphic successions.
Paul L Stoffa

Paul L Stoffa

Multichannel seismic acquisition, signal processing, acoustic and elastic wave propagation, modeling and inversion of geophysical data
Robert H Tatham

Robert H Tatham

Dr. Tatham's research is presently on interpretation and analysis of multi-component seismic data. In particular, by considering both seismic P-wave and S-wave data, many of the effects of solid rock properties and pore-fluid properties may be separated.

Research Staff

Gillian Apps

Deepwater stratigraphy and sedimentology The interaction betwwen structural and depositional processes Engines of slope processes
Richard J Chuchla

Richard J Chuchla

Graduate studies were focused on igneous processes, magmatism and related formation of ore deposits. Professional career included exploration for base and precious metal ore deposits, coal assessment and development, and research, exploration and development in the upstream sector of the oil and gas business. Managerial positions led to development of skills in commercial analysis, strategic planning and valuation. Concurrently, led numerous teams negotiating new contracts which led to a strong grounding in analysis of fiscal ...

Sara Elliott

Tucker F Hentz

Tucker F Hentz

Siliciclastic sequence stratigraphy, sandstone petrology, continental depositional systems, field mapping and stratigraphy
Ian O Norton

Ian O Norton

Plate tectonics, structural evolution of continental margins, reconciliation of observations from structural geology with regional tectonics

Francis Peel

Salt Tectonics Gulf of Mexico Seismic Interpretation Salt Deposition RIsk and probability in exploration Fold and Thrust Belts Deepwater systems
Robert  Porritt

Robert Porritt

Robert M Reed

Robert M Reed

Microstructural analysis of rocks, particularly small-scale deformation structures and pores in mudrocks.
Douglas  Smith

Douglas Smith

Research on mantle evolution using tools of mineralogy, petrology, and geochemistry.

Lisa D Stockli

U-Pb Geochronology and trace element analysis by LA-ICP-MS; TIMS and SIMS techniques;
Christopher K Zahm

Christopher K Zahm

Reservoir characterization, flow modeling in fractured reservoirs, porosity-permeability evolution

Graduate Students

Rawan Alasad

Rawan Alasad

I study the sedimentary record, surficial processes, tectonic relief and catchment evolution that occurs during rifting.

Ruide Ao

Wade L Aubin

Wade L Aubin

Volcanology, Igneous Petrology, and associated interesting things
Claudia  Banks

Claudia Banks

I am interested in defining the provenance history and paleodrainage record of the Amazon River in Brazil and Ecuador; more specifically, how modern Ecuador signals compare to ancient Brazil signals; the time it takes for source sediment from the modern Andes to show up in the Amazon fan to determine which detrital signatures make it to the basin and which signals are lost. My research will combine geochronological data methods like U-Pb zircon dating and ...

James Biemiller

My research focuses on active tectonic processes, particularly deformation mechanisms in rift and subduction zones. More specifically, the relationship between short-term and long-term deformation at active plate boundaries and the physical controls on deformation style. This includes geodynamic modeling of these processes informed by a variety of geophysical and geological methods including GPS, gravity, seismology, structural geology, thermochronometric and cosmogenic dating.
Rachel  Blandon

Rachel Blandon

Interesting in physical volcanology and experimental petrology.
Kristina  Butler

Kristina Butler

I am a field-based sedimentologist and geochronologist who uses sedimentary basin records to understand the drivers and consequences of mountain building. My current research focus is sediment routing and foreland basin evolution of Northern Patagonia. I combine a variety of provenance techniques (sandstone petrography, detrital zircon U-Pb, Lu-Hf and trace and rare earth elements) with depositional system interpretations and subsidence histories. For other current and future research projects, see my website www.kristinalbutler.com
Amanda Z Calle

Amanda Z Calle

My research is focused on the Cenozoic sedimentary, structural and exhumational history of the Eastern Cordillera to modern Chaco foreland basin in southern Bolivia. A multidisciplinary approach of source-to-sink, geochronology, low-temperature thermochronology and structural mapping will be used. Inherited pre-Andean structures and their response to contractional settings will also be evaluated to decipher the Cenozoic evolution of this part of the Central Andes.
Edward  Clennett

Edward Clennett

I am a first year PhD student researching plate tectonics and geodynamics. My interests are in how and why the earth's plates have moved through time, and in how surface plate motions link to the deep mantle. Advised by Prof. Thorsten Becker and Prof. Claudio Faccenna, I will be using geodynamic models to look at how gravitational potential energy, resulting from high topography in mountain belts, links to wider mantle convection and plate motion. Previously, ...
Ethan M Conrad

Ethan M Conrad

I am a second year PhD advised by Dr. Claudio Faccenna and Co-advised by Dr. Nicola Tisato and Dr. Thorsten Becker. My research interests include structural geology, tectonics, fault mechanics, and tectonic geomorphology. I use field observations, thermochronology and laboratory experiments to study how landscapes deform in response to tectonic and climactic forces. The field component of my research is focused on the Cenozoic evolution of the Northern Caribbean Plate Boundary. In particular, using the ...
Scott A Eckley

Scott A Eckley

I am interested in the evolution of the terrestrial bodies, specifically the Earth, Moon, Mars, and Vesta.
Megan E Flansburg

Megan E Flansburg

My primary research interests lie in structural geology, high-temperature thermochronology, and geochemistry and how these three realms of geoscience help build holistic tectonic histories at scales from microscopic relationships up to tectonic plates and paleogeography. My Ph.D. research (supervisor: D. Stockli) is focused on differentiating ductile fabrics of similar kinematics, direction, and metamorphic grade with the use of structurally-integrated (micro- to outcrop-scale) geo- and thermochronology. Mylonitic fabrics exposed in metamorphic core complexes in the ...
Andrew Gase

Andrew Gase

I use seismic and electromagnetic geophysical methods to probe the earth at lithospheric and environmental scales. My recent interests include subduction zone structure, volcanic geomorphology, and magmatic-tectonic interactions.
Nicole K Guinn

Nicole K Guinn

I am interested in volcanic remote sensing and volcanic monitoring. I use ArcGIS analysis and photogrammetry techniques to qualitatively and quantitatively describe the behavior of the pyroclastic flow from the 1980 Mount St. Helens eruption. I aim to provide a way to characterize eruptions using aerial photography due to the hazardous nature of field work on active volcanoes.

Evelin G Gutierrez

My Master's thesis involves stratigraphy, geochronology, and provenance analysis of the basin-fill deposited during orogenesis, as well as seismic structural analyses. My thesis presents 1,500 new detrital zircon U-Pb ages from Upper Cretaceous and Cenozoic clastic formations to provide maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units that span critical timeframes during orogenesis in the Ecuadorian Andes.
Emily Hinshaw

Emily Hinshaw

Eve I Hostettler

Scarlette  Hsia

Scarlette Hsia

PhD student in Geology at the University of Texas at Austin! My primary interests include carbonate facies mapping, sedimentology, paleo-sea level reconstruction, stratigraphy, STEM outreach, canoeing, and scuba diving. If you are an undergraduate student seeking research opportunities and advice, feel free to contact me!
Dominik A Kardell

Dominik A Kardell

I am interested in the evolution of oceanic crust and the processes that affect its physical properties. I am currently performing extensive seismic velocity analysis using MCS data from the Crustal Reflectivity Experiment Southern Transect (CREST). My goal for this project is to characterize the velocity structure of the upper oceanic crust in the western South Atlantic, which has implications for the effect of magmatism and hydrothermal processes on the makeup and geologic structure at ...

Chujie Liu

Joshua Malone

Joshua Malone

My PhD research explores sedimentary basin development with associated orogenic processes. I integrate methodologies like detrital zircon geochronology and Lu-Hf dating to evaluate Paleozoic crustal and basin evolution in Northern Patagonia. My research interests include structural geology, sedimentology, stratigraphy, field mapping, and geochronology. Recent and ongoing research projects include: - Paleozoic basin evolution in Northern Patagonia. - Falklands/Malvinas basin evolution & tectonic history. - Detrital zircon provenance of Oligocene White River deposits in the Bighorn ...

Nicholas F Meszaros

Sean  O'Donnell

Sean O'Donnell

My research interests are in the areas of volcanology and igneous petrology. I am currently researching aspects of the caldera forming eruption of Crater Lake, OR. I am using field and laboratory methods to understand volcanologic and petrologic processes that occurred during different stages of the eruption, and determining how these processes can occur in volcanoes around the world. In the past, I have used experimental methods to study pyroclastic flow dynamics and used petrologic ...
Eirini M Poulaki

Eirini M Poulaki

My research is focused on understanding the evolution of Mediterranean-style subduction zones with constraints from exhumed subduction complexes at the Betic Cordillera (Southern Spain) and Sikinos and Ios islands (Cyclades, Greece). My approach is to integrate a suite of geochronologic and geochemical analyses on zircon, apatite, and rutile, including U-Pb and trace elements split-stream analyses as well as 2D elemental mapping techniques. The ultimate goal of my research is to (1) set constraints on the paleogeographic ...
Simone  Puel

Simone Puel

Evan J Ramos

Evan J Ramos

My research incorporates stable isotope geochemistry, reactive transport modeling, field work, and hydrology to understand the geologic carbon cycle. Whether deep in the crust or at the Earth's surface, I see the physics and chemistry of fluid-rock interactions as a unifying lens to probe whole-Earth geochemical cycles. I have worked on several projects related to skarn formation, namely on how oxygen isotope compositions of garnets record open-system fluid-rock interactions (link to publication [link:https://agupubs....

Samuel Robbins

Catherine  Ross

Catherine Ross

I study punctuated events in Earth's history using field observations, geo/thermochronology, microstructural analysis, and geochemistry. I am broadly interested in how deformation and sedimentation on the seconds to days timescales are expressed in the rock record. My first project involves [bold]dating the Chicxulub target rock[/bold], which is important to advancing the understanding of ejecta and environmental processes. The Yucatn basement target rock has a debated tectonic history, but is suggested to ...
Pamela  Speciale

Pamela Speciale

My research interests include paleopiezometry, rock mechanics and strain localization in the lithospheric mantle. I am examining stress-grainsize relationships in feldspar and orthopyroxene in naturally deformed rocks, in an effort to test experimental extrapolations of these relationships to estimating stress in the lithosphere. I am also exploring the mechanisms and longevity of strain localization in the lithospheric mantle through experimental deformation of dry olivine aggregates.
Murat  Tamer

Murat Tamer

Geo-thermochronology

Graduate Student Position in Mineral Physics Lab

Graduate
The mineral physics lab at the Department of Geological Sciences, Jackson School of Geosciences, the University of Texas at Austin invites applications for graduate student positions towards a Master's or Ph.D. degree in mineral physics. The Jackson School of Geosciences has exceptionally well-funded research programs and offers a number of scholarships to support graduate students for an extended period of time. Candidates with strong background and/or interest in physics (solid state physics), math, and geophysics/geochemistry are strongly encouraged to apply. Our mineral physics research programs focuses on high pressure-temperature experimental studies on materials properties using synchrotron X-ray and optical spectroscopies in a diamond anvil cell. Information about the graduate student programs at the Jackson School is available at: http://www.jsg.utexas.edu/. Please contact Dr. Jung-Fu Lin at afu@jsg.utexas.edu for further information.
Posted by: Jung-Fu Lin

Innovative Detrital Provenance Studies - Double Dating PLUS

Graduate
A major thrust of my current research the development and application of more comprehensive isotopic detrital provenance tools. U-Pb on zircon is clearly the big work horse, but only goes so far and sometimes yields "no" useful info, e.g., if the source of the sediment is mostly recycled sediment. We have extensively pursued double dating of zircons by U-Pb and He, as zircon He ages yield very interesting insights into the thermal and tectonic history of the source terrane; often yielding very different insights than crystallization ages. The combination is powerful, but I think we can take things so much farther by combining double dating with other constrains. People have tried fission track (not precise enough), Hf/Hf (to get mantle separation model ages), etc., but what we want to do and are working on is really Double Dating ++, combining zircon U-Pb-He dating with a variety of other geochemical aspects to more comprehensive understand detrital provenance and improve paleo-tectonic reconstructions. For example, trace-element thermometry (Ti in zirc), REE on zircon (met vs mag origin), Hf/Hf (see above), oxygen isotopes, etc. and also to develop rutile in an analogous manner (e.g., Zr in rut thermometry, Cr/Nb ratio (mafic vs granulitic), REE, etc.). The sky is the limit and what can learn so much. The issue in part it, how much can a single grain tell us before it's gone? The project sounds very laboratory oriented, but it's really a combination of field and lab work. We have identified a few possible case study areas, e.g., Morocco; great exposures, long-lived and preserved record of basin deposition since the Precambrian. My group is already working on some case studies in NW Himalayas, the N & S Pyrenees, the Sevier FTB, Permian Basin and other foreland basin. New projects include provenance studies along rifted and passive continental margins such the Gulf of Mexico, the central Atlantic Margins in Canada, USA, Portugal, and Morocco.
Posted by: Daniel Stockli

Research in structural geology and diagenesis

Graduate or Undergraduate
Fundamental and applied research on fractures, particularly as these studies apply to petroleum reservoirs, is conducted under the auspices of the Fracture Research and Application Consortium at The University of Texas at Austin. The academic program of research, mentoring and teaching is led by staff of the Bureau of Economic Geology, the Department of Petroleum & Geosystems Engineering and the Department of Geological Sciences. Students in the Energy & Earth Resources Graduate Program also participate in FRAC sponsored research projects. For further information on opportunities for fracture studies within the program see the FRAC pages on opportunities in Geology, Petroleum Engineering, Geophysics, and Energy Economics. FRAC welcomes Visiting Scientists from industry and from other academic institutions. Contact Steve Laubach for more information about these opportunities. A key part of the FRAC academic program is the Structural Diagenesis Initiative, a new teaching and mentoring perspective on interacting mechanical and chemical processes at high crustal levels in the Earth. For more information on the initiative see the Structural Diagenesis Initiative web site. If you are a prospective student, please see the admissions information on the Petroleum & Geosystems Engineering or Jackson School of Geosciences web sites.
Posted by: Stephen Laubach

General Opportunities in Field and Laboratory Based Studies

Graduate or Undergraduate
My position does not permit sole supervision of graduate student theses, but I co-supervise or serve on graduate student theses committees, particularly those involving aspects of GIS, GPS, structural geology, tectonics and petrology/mineralogy. I have supervised several undergraduate student honors thesis, both lab- and field-based, and look forward to continuing to do so.
Posted by: Mark Helper

Prospective Students

Graduate or Undergraduate
Thank you for your interest in joining my research group! There are currently opportunities at all levels beginning in the Fall of 2016. I welcome the opportunity to work with students who have a strong academic record, quantitative skills, research and writing experience, and unquenchable curiosity and creativity. Our group focuses on spatial and temporal patterns of water movement in the near surface. If you're interested in joining the lab, please contact me directly (rempe@jsg.utexas.edu) with a CV and a statement of your research experience and interests.
Posted by: Daniella Rempe

Laser ablation (U-Th)/He and 4He/3He dating of zircon and apatite

Graduate
Seeking motivated Ph.D. students interested in noble gas geo-thermochronology and geochemistry to pursue project in method development and application of laser ablation (U-Th)/He dating and depth profile 4He/3He thermochronometry of zircon and apatite. Our laboratory has a dedicated noble gas extraction line with a SFT magnetic sector noble gas mass spectrometer and dedicated Excimer Laser. The lab also houses two Element2 magnetic sector single collector ICP-MS instruments with a second Excimer laser as well as a state-of-the-art Bruker optical interferometric microscope. The project will develop laser ablation methodology to recover detailed thermal histories from apatite and zircon by laser ablation (U-Th)/He and 4He/3He dating as well as comparison to step-heating fractional loss experiments.
Posted by: Daniel Stockli

LA-ICP-MS single-pule U-Pb depth profiling recovery of thermal histories

Graduate
Seeking motivated Ph.D. students interested in in-situ geochronology to pursue project in method development and application of laser ablation continuous mode or single-pulse U-Pb LA-ICP-MS geo-thermochronology as well as trace element speedometry to constrain thermal history or lower and middle crustal rocks. The UTChron Geo- and Thermochronometry laboratory houses two Element2 magnetic sector single collector ICP-MS instruments with a large-volume cell Excimer laser system, ideally suited for depth profiling and U-Pb and trace element split stream analysis. The laboratory also houses a Bruker optical interferometric microscope to control laser ablation rates as well as a Raman system. The focus of applications is on method development and application to the exhumation of middle and lower crustal rocks in rifted margin settings.
Posted by: Daniel Stockli

Lab Assistant

Graduate or Undergraduate
Laboratory Assistants typically work in 3-5 hour blocks, helping researchers collect and process data on all techniques across the lab, as well as occasionally perform some of the few routine lab activities like carbon or gold coating, touch-up polishing, and billing.
Posted by: Phil Orlandini

Student Opportunities

Graduate or Undergraduate
I am always interested in adding motivated new students to an exciting research team at the JSG. Please feel free to email me to ask about the latest opportunities. I highly value diversity in thought and experience, and students from underrepresented groups are strongly encouraged to apply.
Posted by: Daniel Trugman

Postdoc Opportunity: Earthquake Processes

Graduate
I am currently recruiting a postdoc to work in my research group. Click the link (orange text) above for more application details. The scientific focus of this postdoctoral research opportunity is flexible in its scope, but should relate broadly to the advancement of our understanding of earthquake processes and their relation to natural hazards. The postdoctoral fellow will have direct access to supercomputing resources through the Texas Advanced Computing Center (TACC), as well as a state-of-the-art local GPU computing cluster. Applicants are therfore encouraged to "think big" in terms of their ambition in performing innovative and impactful research in the realm of earthquake hazard.
Posted by: Daniel Trugman
(U-Th)/He Geo- and Thermochronometry Lab

(U-Th)/He Geo- and Thermochronometry Lab

The UT (U-Th)/He Geo- and Thermochronometry Laboratory is a state-of-the art facility for the development of (U-Th) dating and its applications to tectonics, petrology, volcanology, stratigraphy, geomorphology, and geoarcheology. The facility houses: (1) 3 fully-automated UHV He extraction lines with 2 diode lasers, 1 Nd:YAG lasers, cryogenic purification systmes, quadrupole mass-specs, and step-heating apparati for diffusion measurements, (2) a Helix SFT magnetic sector noble gas mass-spectrometer with automated UHV gas extraction system with diode and excimer laser, (3) two Element2 HR-ICP-MS instruments for solution and laser ablation analysis for thermo- and geochronometery, as well as a dedicated clean room and sample preparation laboratories.
Academic Seismic Portal at UTIG

Academic Seismic Portal at UTIG

The portal is the gateway to the Marine Seismic Data Center (MSDC). MSDC's goal is to support education and research with access to and preservation of academic active-source seismic data. Our partner, the Academic Seismic Portal at LDEO, has a complementary seismic inventory primarily of field data. These cooperating data centers, part of the Marine Geoscience Data System, are supported by the National Science Foundation.
Cathodoluminescence System

Cathodoluminescence System

The desktop cathodoluminescence system provides valuable visual information from rocks and minerals not seen using regular light petrography or other electron beam equipment. Here, electrons bombard a regular rock thin section and the sample glows in visible light. A high-resolution digital camera captures the images. Applications include examining carbonate textures, quartz overgrowths and filled fractures in sedimentary rocks and understanding mineral zoning and fluid interactions in intrusive igneous rocks.
Core Research Center (Austin)

Core Research Center (Austin)

The Austin Core Research Center (CRC), located adjacent to Bureau headquarters, is the Bureau of Economic Geology's main core repository for core and rock material donated to the university. More than 500,000 boxes of core and cuttings from wells drilled throughout Texas, the U.S., and the world are available at this facility for public viewing and research. Austin, Houston, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. The Integrated Core and Log Database (IGOR) is a searchable database for all CRC core and well cutting holdings. Public facilities include core examination layout rooms and processing rooms for slabbing core. Other services are available upon request.
Core Research Center (Houston)

Core Research Center (Houston)

The Houston Research Center (HRC), is located on the west side of Houston, Texas, six miles north of I-10 and two miles south of U.S. Highway 290. This state-of-the-art climate-controlled facility is equipped to permanently store and curate over 900,000 boxes of geologic core and cuttings. The Houston, Austin, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. In addition to the climate-controlled core and cuttings warehouse, the HRC complex has offices, laboratories, and a well-lit core layout room available for visiting scientists. There are also two conference rooms to accommodate guests attending short courses and seminars. Other services are available upon request. Nominal fees are charged to rent table space and to view core. The HRC has space dedicated for storing samples and cores acquired by NSF-funded research. The HRC curates this material and facilitates continued access to the material by researchers. The Integrated Core and Log Database (IGOR) is a searchable database for all core and well cutting holdings.
Devine Geophysical Test Site

Devine Geophysical Test Site

The 100-acre Devine Test Site (DTS) is located less than 50 miles southwest of San Antonio, Texas, in Medina County, Texas. The site is managed by the Exploration Geophysics Laboratory (EGL), an Industrial Associate Program at the Bureau of Economic Geology. It is a state-of-the-art public-domain geophysical research facility for academia and industry donated to the university in 1998 by BP. The test site is used for surface-based seismic and potential-field experiments performed in conjunction with downhole and crosswell experiments.
Dual-frequency Geodetic Quality GPS Receivers

Dual-frequency Geodetic Quality GPS Receivers

We have 5 Trimble Net-RS receivers, tripods, choke ring antennas. One is with Tiffany Caudle at BEG used to support the Optech Lidar system. The other 4 are in JGB 3.122 and used by various groups.
Electron Microprobe

Electron Microprobe

Installed in 2002-2003, the JEOL JXA-8200 electron probe microanalyzer (EPMA) is equipped with five wavelength dispersive spectrometers (WDS), an energy dispersive detector (EDS), and two image detectors in secondary and backscattered electron modes. The primary aim of the microprobe is quantitative elemental analysis of minerals on a microscale with high precision (less than a percent relative for major constituents) and low detection limits (commonly a few tens to few hundreds ppm)
Environmental Scanning Electron Microscope

Environmental Scanning Electron Microscope

Installed in the fall of 2001, this is a 30 kV tungsten gun high-resolution environmental scanning electron microscope (ESEM) with a 3.5 nm resolution in high vacuum, low vacuum, and environmental modes at 30 kV. The ESEM is equiped with a Peltier cooled stage, a heating stage, an EDS sytem (EDAX), a EBSD system (HKL Oxford Instruments), and a cathodoluminescence detector (Gatan).
Experimental Petrology Lab

Experimental Petrology Lab

A state-of-the-art laboratory that consists of three DelTech furnaces for TZM-style pressure vessels and eleven cold-seal pressure vessel systems, four of which are equipped with rapid-quench capabilities. The pressure line for the cold-seal vessels allows for controlled, continuous decompressions. Combined, the experimental facilities allow experiments to be run at up to ~1250 degrees C and from atmospheric to 4000 bars pressure, depending on temperature. The lab also is equipped with a one-atmosphere gas-mixing furnace for homogenization of glasses in controlled atmospheres. Recent funding from the National Science Foundation will allow the laboratory to acquire a Piston Cylinder Apparatus to allow experimental conditions to be extended to 1700 degrees C and up to 4 GPa (40,000 bars) pressure.
Fission Track Thermochronology Laboratory

Fission Track Thermochronology Laboratory

Enables analysis of fission tracks in apatite and zircon to constrain the low-temperature time-temperature (t-T) history of sedimentary, igneous, and metamorphic rocks.
Fluid Inclusion Lab (DGS)

Fluid Inclusion Lab (DGS)

The fluid inclusion laboratory is based around a modified USGS-type gas-flow heating/freezing stage capable of microthermometry of fluid inclusions over a range of 700° to -180°C. The stage is mounted on an Olympus BX51 microscope with a 40X long-working distance objective, 2X image magnifier, and digital camera for image capture. The microscope also has capability for UV fluorescence petrography. Complementary facilities are available for reflected and transmitted light petrography and image capture.
Geometrics GEODE Seismograph Systems

Geometrics GEODE Seismograph Systems

The Department has 2 boxes (total 48 Channels) with 48 vertical phones and 16 3 component phones).
Geophysical Equipment for Glaciology

Geophysical Equipment for Glaciology

We have a custom built, low-frequency, short-pulse, ground-based radar system to image deep (>100 m) internal layers and the base of the ice sheet. Frequencies used with this system include 1, 2, 5 and 10 MHz. We also have a GSSI high-frequency (100MHz) ground-based radar system which can be used in several configurations and with a range of antennae frequencies. In addition, we have 7 GNSS GPS units for high-precision positioning, as well as multiple data loggers and time-lapse cameras for use in glaciological settings.
Geophysics Software

Geophysics Software

Landmark and Geoquest software is used for processing and interpreting 3 dimensional seismic data.
High Temp. Stable Isotope Lab

High Temp. Stable Isotope Lab

This newly renovated lab is overseen by Jaime Barnes and houses a ThermoElectron MAT 253 with associated peripheral devices and instrumentation (TC/EA, GasBench II, Conflo IV, online silicate laser extraction line, general purpose vacuum extraction lines, Cl purification line). Instrumentation permits measurements of the stable H, C, N, O, S, and Cl isotope ratios of silicate, phosphate, and carbonate minerals, volcanic gases, air, and waters
High-Resolution X-ray Computed Tomography Facility

High-Resolution X-ray Computed Tomography Facility

Provides high resolution non-destructive, density maps of solid samples (rocks, fossils, etc) up to a maximum size of 50 cm diameter by 150 cm high (50 kg mass). Equipment: An industrial CT scanner that is an adaptation of medical CAT scanners.
Hockley Seismic Station

Hockley Seismic Station

Part of the USGS Seismic Network, the Hockley Station vault is 472 meters below surface in a salt mine. Site Geology: Located in the Willis Formation that is made of clay, silt, sand, and minor siliceous gravel. Deposited in the lower Pleistocene and is approximately 200 feet thick.

HR-ICP Mass Spectrometers

Equipment available: Thermo Element2 HR-ICP-MS with ESI autosampler system for solutions; and Thermo Element2 HR-ICP-MS with Photonmachines Analyte G2 Excimer laser ablation system.
Infrared (FTIR) Spectroscopy

Infrared (FTIR) Spectroscopy

This lab uses Fourier-Transform Infrared (FTIR) analyses to measure dissolved water and carbon in natural and experimental silicate glasses. The lab is equipped with a Thermo Electron Nicolet 6700 FTIR spectrometer and Continuum IR microscope, equipped with automated x-y-z stage and stage purge system so that the spectrometer, microscope, and sample position are all purged with dry air that has <10 ppm CO2 for very precise measurements of CO2 poor glasses. Dedicated polishing facilities are also available for sample preparation.
Isotope Clean Lab (Lassiter)

Isotope Clean Lab (Lassiter)

Within the Department of Geological Sciences there are three clean-room laboratories supplied with HEPA-filtered class 100 air where sample preparation and ion-exchange chromatography for isotopic analysis may be done under ultra-clean conditions, making possible very low analytical blanks (e.g., < 1 pg Pb for U-Pb geochronology, and <10 pg Sr). There are also two other laboratories with HEPA-filtered work stations where sample preparation and ion-exchange chromatography are performed. These labs are affiliated with the Mineral Separation Facility (see description).
Mineral Physics Lab

Mineral Physics Lab

The Mineral Physics Laboratory has a variety of diamond anvil cells (DACs) and relevant facilities that allow the study of planetary materials (minerals, fluids, glasses, single-crystal and polycrystalline compounds) under under extreme high pressure-temperature conditions. The DACs are integrated with laser and synchrotron X-ray spectroscopic techniques to probe material properties.

Mineral Separation Facility

Includes shatterboxes for sample pulverization, a crusher, a disc mill pulverizer, a Rogers table, a Wilfly table, a mica table, sieves, heavy liquids and Franz magnetic separators for mineral separation.
Ocean-Bottom Seismometer (OBS)

Ocean-Bottom Seismometer (OBS)

An Ocean-Bottom Seismometer (OBS) is a seismometer that can be deployed on the seafloor for weeks or months, recording either earthquakes or man-made seismic signals. To withstand pressures at large depth (up to 5500 m) in the oceans, all electronics of this instrument are kept inside a glass sphere which can withstand such pressures. The sensors of all instruments (discussed below) include a 3-component accelerometer and a hydrophone, all designed for seismic data with a dominant frequency near 10 Hz. The seismic data are recorded on flash memory. Correct timing of the seismic recording is provided by an accurate clock, which also resides inside the sphere. After a seismic study on the seafloor is complete, the instrument is brought back to the sea surface using an acoustic release mechanism. UTIG has long been involved in marine seismology. The development of a UTIG OBS instrument program began in 1978.
Paleomagnetic Lab

Paleomagnetic Lab

There are several aspects to our laboratory that make it different from others. One is our automatic handler system created at California Institute of Technology and adapted for our needs. Scientists and students can keep up with changes to our system by keeping in touch with the other 6 similar systems in the world and RAPID Consortium at http://rapid.gps.caltech.edu/. It also includes a cryogenic magnetometer and portable magnetic susceptibility meter (TerraPlus KT-10 Plus).

Petrographic Microscopes

Micro-scale imaging of rocks using directly observed visible light. Equipment: Low-power stereo microscopes, high resolution low-magnification scanned imaging, transmitted and reflected cross-polarized microscopy, high resolution 3D light microscopy (Edge R400) UV-stimulated fluorescence microscopy, microscope-mounted CL Photomicrography systems for all of these methods, both digital (Polaroid DMC) and conventional film.
Portable High-Resolution Multichannel Seismic System (MCS)

Portable High-Resolution Multichannel Seismic System (MCS)

UTIG owns and maintains elements of a self-contained, portable, high resolution multichannel seismic (MCS) system that has been used over the past several years in salt- and fresh-water depths from ~4m to over 1km, on vessels from 10m to 35m in length. The 24-channel system is designed to be transported worldwide and to be installed on vessels of opportunity. Survey design, navigation, data acquisition, and near real-time MCS processing can be performed on non-dedicated laptops in the field. Deployment and recovery of gear is done by hand, requiring as few as 3 persons. The only constraints on the system are weight limits of the vessel and electrical requirements of the dedicated air compressors. For platforms with insufficient electrical capabilities, a fuel-powered generator or air compressor can be rented as a substitute.

Quadrupole ICP Mass Spectrometer

The Quadrupole ICP-MS laboratory (with laser ablation) is used for elemental determinations in a wide range of liquid (e.g., natural waters, dissolved sediments/rocks, digested biomass) and solid (e.g., rocks, minerals, glasses) samples. The ICP-MS instrument is an Agilent 7500ce, capable of measuring trace element concentrations in solution over a nine-order linear dynamic range, from ppt to 100s of ppm. Sample introduction systems include a Micromist concentric nebulizer with a Peltier-cooled spray chamber for aspirating solutions, and a New-Wave UP193-FX 193 nm excimer laser ablation system for micro-sampling of solids. Sub-ppm detection limits are obtained routinely by laser ablation. The Agilent 7500ce is equipped with a collision/reaction cell, allowing for quantification of environmentally important matrix/plasma-sensitive elements such as As, Se, and Fe. The instrument is housed in a positive-pressure HEPA-filtered laboratory equipped with a weighing station, laminar flow bench, and Type 1 (18.2 M?) ultrapure water station.
Scanning Electron Microscope Lab (DGS)

Scanning Electron Microscope Lab (DGS)

Installed in 2008, this is a high-performance, 30 kV tungsten gun scanning electron microscope with a high resolution of 3.0 nm. The low vacuum mode allows for observation of specimens which cannot be viewed at high vacuum due to a non-conductive surface. This SEM has three detector systems - secondary electron (SE), backscattered electron (BSE), and X-ray EDS detectors.
Structure Lab

Structure Lab

The structural geology lab is where rocks are processed for structural geology and tectonics research. Storage space and all necessary equipment are available for preparing slabs, thin sections, and mineral separation for geochronology.
Sub-Bottom Profiling Systems

Sub-Bottom Profiling Systems

UTIG owns and maintains an integrated sonar system for use in conducting Compressed High Intensity Radar Pulse (CHIRP) subbottom profiling of the upper sediment layers of the ocean bottom or various fresh water systems. The 3200-XS system was purchased in 2007 from Edgetech Corp. of West Wareham, MA (see www.edgetech.com) and can be deployed in water depths from ~2 m to >300 m with an optimum towing height of 3-5 m above seafloor. Deployment and recovery of the towfish can be done by shipboard winches for shallower deployments or a larger UTIG-owned Electro-Hydraulic winch. Constraints on vessel size are dependent on shipboard winches capability of handling either the large (190kg SB-512i) or small (76 kg SB-216S) towfish. Power control, navigation, video display, data acquisition and data storage are all performed by one topside processing unit. The system can be powered by 18-36 VDC or 110/240 VAC (auto-ranging). The system is presently comprised of: 3200-XS topside computer processor, 4-transducer SB-512i towfish, 1-transducer SB-216s towfish, electro-hydraulic winch with 500 m of armored tow cable, 3 shallow water tow cables of 10, 25, and 50 m length, GPS navigation system.
Superconducting Gravimeter Lab

Superconducting Gravimeter Lab

A GWR superconducting gravimeter (precision ~0.01 micrGals) configured to be transportable, used in hydrologic and other studies. This is usually deployed in the field for campaigns of months and longer.
Thermal Ionization Mass Spectrometry (TIMS) Lab

Thermal Ionization Mass Spectrometry (TIMS) Lab

The TIMS Lab is a state-of-the-art facility capable of measuring Rb-Sr, Sm-Nd, Re-Os, U-Th-Pb and U-series isotopes in a variety of materials, with the goal of resolving fundamental questions in the fields of geology, hydrology, archaeology and environmental science.
Volcanology Lab

Volcanology Lab

This lab is equipped with a Spectrex PC-2200 Laser Particle Counter and several sets of 8" brass mesh sieves to analyze volcanic particles in sizes from centimeters down to 1 micrometer for determining size distributions of volcanic tephra deposits and their componentry.
Walter Geology Library

Walter Geology Library

The primary research collections of the library presently include more than 100,000 book and journal volumes and 46,000 geologic maps, among them the publications of the U.S. Geological Survey, most state geological surveys, and those of many foreign countries. Regional emphasis of the collection is on the Southwestern United States, Texas, and Mexico. The Institute and Bureau also have extensive libraries related to their specific research areas.

Center for Computational Geosciences & Optimization

The Center for Computational Geosciences and Optimization addresses modeling of the solid and fluid earth systems, with emphasis on large scale simulation and inversion on supercomputers. Problems of interest include forward and inverse modeling of regional and global seismic wave propagation, mantle convection, atmospheric and subsurface contaminant transport, ocean dynamics, and flow in porous media. Research in the CCGO is conducted jointly with collaborators from the Jackson School of Geosciences, other ICES centers, the College of Engineering, the Department of Computer Sciences, other universities including Carnegie Mellon, Penn, MIT, Columbia, and Emory, and Sandia National Labs. Related inverse and optimization problems in the mechanical and biomedical engineering sciences are also being pursued.

Fracture Research and Application Consortium

The Fracture Research and Application Consortium (FRAC) is an alliance of scientists from the Bureau and the departments of Petroleum and Geosystems Engineering and Geological Sciences that seeks fundamental understanding of fractures and fracture processes dedicated to conquering the challenges of reservoir fractures.

High-Resolution X-ray Computed Tomography Facility

The High-Resolution X-ray Computed Tomography Facility at The University of Texas at Austin (UTCT) is a national shared multi-user facility supported by the Instrumentation and Facilities Program of NSF's Earth Sciences (EAR) directorate. UTCT offers scientific researchers across the earth, biological and engineering sciences access to a completely nondestructive technique for visualizing features in the interior of opaque solid objects, and for obtaining digital information on their 3D geometries and properties.

Network for Earthquake Engineering Simulation

The George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) is a national, networked, simulation resource that includes geographically-distributed, shared-use, next-generation experimental research Equipment Sites built and operated to advance earthquake engineering research and education through collaborative and integrated experimentation, theory, data archiving, and model-based simulation. The goal of NEES is to accelerate progress in earthquake engineering research and to improve the seismic design and performance of civil and mechanical infrastructure systems through the integration of people, ideas, and tools in a collaboratory environment. Open access to and use of NEES research facilities and data by all elements of the earthquake engineering community, including researchers, educators, students, practitioners, and information technology experts, is a key element of this goal.

PLATES

A program of research into plate tectonics and geologic reconstructions, the PLATES Project is supported by an industry consortium. Our primary objectives are to model past and present plate movement, compile comprehensive databases, develop plate motion computer software and apply plate motion models.

Structural Diagenesis Initiative

Structural diagenesis is a new perspective on interaction of mechanical and chemical processes at high crustal levels in the Earth. SDI promotes the growth of this new discipline.

Texas Consortium for Computational Seismology

The mission of the Texas Consortium for Computational Seismology is to address the most important and challenging research problems in computational geophysics as experienced by the energy industry while educating the next generation of research geophysicists and computational scientists.

TexNet Seismic Monitoring Program

In the 84th Legislative Session, the Texas Legislature tasked us with helping to locate and determine the origins of earthquakes in our State, and, where they may have been caused by human activity, helping to prevent them from occurring in the future. We have established the TexNet earthquake monitoring program to accomplish these goals, and we plan to place earthquake monitoring stations across Texas to gather information about and study these events as they occur. We want to help inform Texas citizens so that they can keep their property safe from the impact of earthquakes.

Posted by Marcus Gary
Photos of research of the Sistema Zacaton karst area