Deep Crustal Processes

Faculty & Research Scientists

Jaime D Barnes

Jaime D Barnes

Stable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes
Thorsten  Becker

Thorsten Becker

mantle dynamics; fault system dynamics; structural seismology; numerical modeling
Elizabeth J Catlos

Elizabeth J Catlos

Can also see https://www.catlos.work/ My primary research focus is [bold]geochemistry[/bold], and how the fundamentals of chemistry (mineral reactions, radiogenic and stable isotopes, major and trace elements) can be and are used to understand what the Earth was like in the past. In this, I have interests that span a broad range of range of plate boundary processes and laboratory approaches. Many ancient fault systems are clues to determine the evolution ...
Claudio  Faccenna

Claudio Faccenna

Topics: subduction tectonic and morphological evolution of convergent margin, evolution of orogenic belt and exhumation of deep metamorphic rocks, dynamic topography, trench migration and back-arc deformation, mantle convection, volcanism and fluid circulation in the crust. Tools: Structural geology and geomorphology, experimental / numerical geodynamic modelling, paleomagnetism, seismic lines interpretation. Field sites: Tethyan belt: Mediterranean to the Middle East (Morocco, Spain, Italy, Greece, Turkey, Iran), Himalaya (Pakistan), Andes (Argentina-Colombia), Antarctica.
James E Gardner

James E Gardner

Volcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies
Mark A Helper

Mark A Helper

Dr. Helper is a field geologist, a generalist whose interests span igneous and metamorphic petrology, structural geology, tectonics, mineralogy and planetary field geology. His current research explores geochemical and isotopic similarities of Proterozoic and Archean crust in East Antarctica and the southwestern U.S., the Precambrian geology of Texas, and the origin of epidote blueschists in the Klamath Mountains of northern California. Recent senior honors theses under his supervision have examined the mineralogy of Texas ...
Richard A Ketcham

Richard A Ketcham

High-resolution X-ray computed tomography, CT scanning, 3D image analysis, fission-track dating, thermochronology, structural geology, tectonics, digital morphology, trabecular bone
John C Lassiter

John C Lassiter

Earth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/mantle boundary
Luc L Lavier

Luc L Lavier

Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Sharon  Mosher

Sharon Mosher

Structural petrology, field-oriented structural geology, the evolution of complexly deformed terranes, strain analysis, deformation mechanisms, the interaction between chemical and physical processes during deformation

Phil Orlandini

Ductile deformation; petrology; machine learning; SEM; EBSD; EPMA; EDS; field geology & structural geology
Mrinal K Sen

Mrinal K Sen

Seismic wave propagation including anisotropy, geophysical inverse problems, earthquakes and earth structure, applied seismology, petroleum exploration including 4D seismology
Daniel  Stockli

Daniel Stockli

Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Harm J Van Avendonk

Harm J Van Avendonk

Van Avendonk is an active-source seismologist who specializes in the acquisition and inversion of seismic refraction data on land and at sea. Often these seismic refraction data are used for a tomographic inversion. The resultant seismic velocity models help us to interpret the composition of the Earth’s crust and mantle, the geometry of sedimentary basins, and the structure of plate boundaries.

Laura Wallace

Crustal deformation, GPS/Geodesy, active plate boundary processes, subduction tectonics, geohazards

Postdoctoral Researchers

Federico Galster

Tectonic; Geochronology, Stratigraphy, Biochronology

Research Staff

Robert  Porritt

Robert Porritt