Geophysics/Seismology

The Jackson School has one of the country’s largest, most diverse, and most respected geophysics programs. Ranked No. 6 according to U.S. New & World Report, the geophysics program benefits from outstanding connections to industry and a strong grounding in basic research through the school’s major units, including the Institute for Geophysics, which employs 40 research scientists (and many JSG graduate students) working across the spectrum of geophysics research.


Overall, the Jackson School has about 250 graduate students in all disciplines, divided about equally between master of science and doctoral degree seekers. Both degrees involve original research in the form of a thesis or dissertation, and publication of results and presentation at professional society meetings is a goal for all graduate students.

Roughly 20 percent of the graduate student body is engaged in research that employs geophysical observations, and/or develops new geophysical techniques. The diverse graduate research opportunities in geophysics can be separated broadly into four major themes: field intensive studies; theoretical and numerical investigations; applied geophysics; and regional to global scale studies.

Field Studies

Examples include Antarctic expeditions with aero-geophysical surveys of major ice sheets; marine geophysical expeditions to understand tectonic and sedimentary processes over the continental margins and deep oceans; broad-band seismic experiments to illuminate the structure of the crust and upper mantle; airborne laser mapping of topography to understand terrestrial sedimentary processes; radar and electromagnetic investigations of the near-surface; and active source seismic experiments for near-surface and petroleum exploration studies. There are also development efforts for seismic sources and receivers, gravity, radar, and other field instrumentation.

Theoretical and numerical investigations

These include: solutions to inverse problems to estimate complex multi-parameter earth models from large data sets; development of numerical methods to simulate wave propagation and deformation in complex materials via finite element and finite difference methods; inference from and analysis of complex systems, such as Earth’s climate variations; and development of algorithms using parallel processing architectures.

Applied geophysics

Geophysical methods employing seismic and electromagnetic waves can be used to explore for resources, including petroleum, water, and others, and to estimate near surface physical properties for identification of hazards. Examples underway at UT include improved imaging of subsurface structures to support geological interpretation; estimation of subsurface physical properties from conventional and multi-component seismic data; and application of electromagnetic methods (radar and others) to estimate subsurface structure and physical properties.

Regional to global scale studies

UT geophysicists develop images of the interior of the earth using seismic waves; study earthquake sources and their distribution in time and space; interpret the deformation of the crust and the forces that cause them; and study Earth’s gravity and magnetic fields from surface and space-based observations.

Faculty & Research Scientists

James A Austin

James A Austin

Stratigraphic evolution of a wide range of marine and lacustrine environments around the world
Thorsten  Becker

Thorsten Becker

mantle dynamics; fault system dynamics; structural seismology; numerical modeling
Ginny Catania

Ginny Catania

Ice sheet mass balance, ice dynamics, subglacial hydrology, ice sheet stratigraphy, radar, GPS methods, uncertainty in ice sheet response to climate.
Gail L Christeson

Gail L Christeson

Marine seismology, mid-ocean ridge structure and emplacement processes, oceanic crustal structure, ocean-bottom seismology, seismic refraction
Sergey Fomel

Sergey Fomel

Computational and exploration geophysics; seismic imaging; wave propagation; seismic data analysis; inverse problems; geophysical estimation
Omar  Ghattas

Omar Ghattas

Computational geoscience and engineering, simulation and optimization of complex solid, fluid, and biomechanical systems, inverse problems, optimal design, and optimal control
John A Goff

John A Goff

Seafloor morphology and bathymetry, swath sonar mapping, stratigraphy of the shallow seabed, ultra-high resolution seismic reflection (chrip) systems, sedimentary horizons, sea ice draft, crustal heterogeneity, canyon morphology on continental slopes, abyssal hills
Stephen P Grand

Stephen P Grand

Seismic imaging of Earth's mantle, tomography, dynamics of flow in the mantle, regional seismic studies

Cyril Grima

Sean S Gulick

Sean S Gulick

Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events Marine geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and submersibles
Peter H Hennings

Peter H Hennings

Field and subsurface structural geology; seismic structural interpretation and analysis; characterization and hydraulic modeling of fractured and compartmentalized reservoirs; reservoir geomechanics; induced seismicity; fault seal analysis; thrust belt kinematics; hydrocarbon exploration and production; geology of Trans-Pecos Texas, Wyoming, and western Montana.
Marc A Hesse

Marc A Hesse

Multiphase flow in porous media, geomechanics, numerical simulation, mathematical, modeling, reactive transport, magma dynamics.
Farzam  Javadpour

Farzam Javadpour

Dispersion phenomena in porous systems (hydrocarbon reservoirs and brine aquifers); shale gas; CO2 injection up-scaling; EOR, EGR, and sequestration; nonotechnology in rock characterization.
Luc L Lavier

Luc L Lavier

Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Lawrence A Lawver

Lawrence A Lawver

Marine geophysics, plate tectonics, magnetics, gravity, heat flow, seismic studies, paleogeographic reconstructions of Gondwana, the Polar Regions, East Asia, and the Western Pacific
Jung-Fu  Lin

Jung-Fu Lin

Mineral physics, physics and chemistry of planetary materials, solid-Earth geophysics and geochemistry, high-pressure diamond anvil cell, X-ray and laser spectroscopy
Maria-Aikaterini  Nikolinakou

Maria-Aikaterini Nikolinakou

Maria-Katerina Nikolinakou is currently a Research Scientist at the Bureau of Economic Geology, Jackson School of Geosciences, at the University of Texas at Austin. Her research focuses on understanding stress and pore pressure in complex geologic systems, including salt systems and thrust belts. She studies the behavior of geologic materials under high stress levels and complex stress paths. She develops applied workflows for pressure prediction in exploration settings. Maria is a Civil/Geotechnical Engineer. She ...
Jeffrey G Paine

Jeffrey G Paine

Near-surface geophysics in hydrogeology and environmental and Quaternary geology; coastal geology; Quaternary geology and geomorphology; computer applications in the geological sciences
Mrinal K Sen

Mrinal K Sen

Seismic wave propagation including anisotropy, geophysical inverse problems, earthquakes and earth structure, applied seismology, petroleum exploration including 4D seismology
Krista M Soderlund

Krista M Soderlund

Astrobiology, Cryosphere, Geophysical Fluid Dynamics, Magnetohydrodynamics, Planetary Science
Kyle T Spikes

Kyle T Spikes

Exploration Geophysics, in particular rock physics applications and seismic inversion techniques for reservoir characterization.
Nicola  Tisato

Nicola Tisato

Experimental rock physics and rock mechanics. Digital Rock Physics. Speleology. Seismic wave attenuation, Physical properties of rocks, Wave-Induced-Phenomena, Genesis of caves and speleothems, Reservoir characterization, Nuclear waste management.
Daniel  Trugman

Daniel Trugman

Harm J Van Avendonk

Harm J Van Avendonk

Van Avendonk is an active-source seismologist who specializes in the acquisition and inversion of seismic refraction data on land and at sea. Often these seismic refraction data are used for a tomographic inversion. The resultant seismic velocity models help us to interpret the composition of the Earth’s crust and mantle, the geometry of sedimentary basins, and the structure of plate boundaries.

Laura Wallace

Crustal deformation, GPS/Geodesy, active plate boundary processes, subduction tectonics, geohazards
Clark R Wilson

Clark R Wilson

Geophysics, including gravity, space geodesy, and applied seismology
Duncan A Young

Duncan A Young

Ice-rock physical interactions in an ice cap context, tectonic evolution of the younger planetary crusts
Hongliu  Zeng

Hongliu Zeng

Seismic sedimentology; seismic geomorphology; seismic and sequence stratigraphy; Characterization of thin-bed reservoirs; seismic chrono-stratgraphy
Tongwei  Zhang

Tongwei Zhang

Gas geochemistry and isotope geochemistry; Petroleum and gas generation kinetics and basin modeling; Fluid transport processes in basins and reservoirs; Organic-inorganic interactions; Unconventional gas reservoir characterization; CO2 sequestration and H2S risk prediction.

Postdoctoral Researchers

Jamin S Greenbaum

Jamin S Greenbaum

Mahdi  Haddad

Mahdi Haddad

geomechanics of induced seismicity; geomechanical simulation of multiple-stage hydraulic fracture propagation using cohesive zone model and extended finite element method; numerical simulation of multiphase flow in porous media; development of computational fluid dynamics codes using finite volume, finite element (classic and Streamline Upwind Petrov-Galerkin), and smoothed particle hydrodynamics methods.

Adjunct/Emeritus Faculty​ & Research Scientists

Yosio  Nakamura

Yosio Nakamura

Geophysics, lunar and planetary seismology, ocean-bottom seismometry
Paul L Stoffa

Paul L Stoffa

Multichannel seismic acquisition, signal processing, acoustic and elastic wave propagation, modeling and inversion of geophysical data
Robert H Tatham

Robert H Tatham

Dr. Tatham's research is presently on interpretation and analysis of multi-component seismic data. In particular, by considering both seismic P-wave and S-wave data, many of the effects of solid rock properties and pore-fluid properties may be separated.

Research Staff

Michael V DeAngelo

Michael V DeAngelo

2-D/3-D seismic interpretation and seismic inversion analysis; geological/geophysical database management; development of seismic vector-wavefield technologies; seismic data acquisition and 3D acquisition design
Kathy Ellins

Kathy Ellins

Geoscience education; Discipline Based Education Research (DBER); teacher professional development; geoscience curriculum development; undergraduate geoscience teacher preparation; climate literacy; geoscience, art and design engagement

Thomas Hess

Geoscience software, anisotropic imaging, seismic processing, seismic geometry, deconvolution, problem solving.
Yosio  Nakamura

Yosio Nakamura

Geophysics, lunar and planetary seismology, ocean-bottom seismometry
Ian O Norton

Ian O Norton

Plate tectonics, structural evolution of continental margins, reconciliation of observations from structural geology with regional tectonics
Robert  Porritt

Robert Porritt


Graduate Students

Ruide Ao

James Biemiller

My research focuses on active tectonic processes, particularly deformation mechanisms in rift and subduction zones. More specifically, the relationship between short-term and long-term deformation at active plate boundaries and the physical controls on deformation style. This includes geodynamic modeling of these processes informed by a variety of geophysical and geological methods including GPS, gravity, seismology, structural geology, thermochronometric and cosmogenic dating.
Edward  Clennett

Edward Clennett

I am a first year PhD student researching plate tectonics and geodynamics. My interests are in how and why the earth's plates have moved through time, and in how surface plate motions link to the deep mantle. Advised by Prof. Thorsten Becker and Prof. Claudio Faccenna, I will be using geodynamic models to look at how gravitational potential energy, resulting from high topography in mountain belts, links to wider mantle convection and plate motion. Previously, ...

Cameron M deFabry

Arnab Dhara

Abdulah  Eljalafi

Abdulah Eljalafi

Abdulah s research focuses on understanding depositional and stratigraphic processes of carbonate platforms. His research focuses on deciphering the architectural relationships of mid Cretaceous carbonate platforms in mexico from a depositional standpoint based on field mapping. Other Interests include microbialite morphology, field stratigraphy, and invertebrate paleontology.
Andrew Gase

Andrew Gase

I use seismic and electromagnetic geophysical methods to probe the earth at lithospheric and environmental scales. My recent interests include subduction zone structure, volcanic geomorphology, and magmatic-tectonic interactions.

Zhicheng Geng

Eric J Goldfarb

Check out my research website! Eric.Goldfarb.ca.


Marco A Guirola

Dominik A Kardell

Dominik A Kardell

I am interested in the evolution of oceanic crust and the processes that affect its physical properties. I am currently performing extensive seismic velocity analysis using MCS data from the Crustal Reflectivity Experiment Southern Transect (CREST). My goal for this project is to characterize the velocity structure of the upper oceanic crust in the western South Atlantic, which has implications for the effect of magmatism and hydrothermal processes on the makeup and geologic structure at ...

Chujie Liu

Landon  Lockhart

Landon Lockhart

Landon's research is focused on characterizing the pressures and stresses in complex geologic settings. Specifically, his research integrates geomechanical modeling, experimental analysis, and field data at the Mad Dog Field, deepwater Gulf of Mexico. The title of Landon's thesis is "New Pore Pressure Prediction Workflow to Capture the Effects of Mean Effective Stress and Deviatoric (shear) stress at the Mad Dog Field." Landon has also recently developed a new online software tool (UT-FAST-P^3) to predict ...

Chang Lu

Patrick (Kevin) Meazell

Patrick (Kevin) Meazell

I am a deepwater sedimentologist and stratigrapher. My research focuses on the deposition of clastic, methane hydrate-bearing reservoirs in the deepwater Gulf of Mexico. I study these deposits at the basin- to grain-scale. During my time at the Jackson School of Geosciences I have helped to plan and execute the drilling of multiple wells as part of the UT led GOM2 project (https://ig.utexas.edu/energy/genesis-of-methane-hydrate-in-coarse-grained-systems/expedition-ut-gom2-1/).

Kelly Olsen

seismic reflection processing/interpretation, Chile, Hikurangi, well-log interpretation, megathrust earthquakes, tectonics

Nam P Pham

Son D Phan

Son D Phan

Seismic quantitative methods for reservoir characterizations: inversion, wave propagation, rock physics modeling, anisotropy, uncertainty analysis
Simone  Puel

Simone Puel

Logan Schmidt

Logan is interested in the shallow subsurface and its interaction with terrestrial ecosystems. His graduate research seeks to identifying regions of the Earth in which rock moisture (groundwater existing beneath the soil but above the water table in weathered, fractured bedrock) is ecologically important and to quantify the hydrologic dynamics of the weathered bedrock zone in these regions using novel geophysical methods.
John M Swartz

John M Swartz

Research interests: Sedimentology/stratigraphy, coastal and nearshore processes, quantitative geomorphology, marine geophysics, statistical methods in geoscience

Jackson R Tomski

Melianna Ulfah

My academic and industrial experiences are my journey in contributing to provide adequate energy while giving back to the environment. I possess theoretical and practical skills in mining, petroleum, and environment sectors, and I strive to solve challenging problems in energy from various perspectives. As a geophysicist currently working on Carbon Capture and Sequestration project, my career objective is to support the energy transition, by making the current dominant sources of energy cleaner.

David Wiggs

Shuai Yan

Graduate and undergraduate research in geologic sequestration of CO2

Graduate or Undergraduate
Gulf Coast Carbon Center supports a team of students and post docs working in geologic sequestration (deep subsurface long-duration storage) of the major greenhouse gas CO2, as a method to reduce release to the atmosphere. Student projects are wide ranging, from sedimentology to policy, linked in that they are 1) multidisciplinary and 2) applied to current issues. Students are typically jointly supervised by faculty in geology or petroleum geosystems engineering and staff at the GCCC. A class in geologic sequestration is offered in the fall some years.
Posted by: Susan Hovorka

Graduate research opportunities in computational seismology

Graduate
Texas Consortium for Computational Seismology is looking for Ph.D. students interested in computational research. Our group works on a broad range of topics in exploration geophysics, from wave-equation seismic imaging and inversion to computational algorithms for seismic data processing and seismic interpretation. The work is supported by industrial sponsors. We use open-source software tools and high-performace computing resources.
Posted by: Sergey Fomel

High Resolution 3D marine seismic for fluid studies

Graduate
Opportunities exist to become involved in the design, acquisition, processing, and interpretation of high-resolution 3D marine seismic data. Current applications include characterization for subsurface storage of carbon dioxide and natural fluid migration studies. We anticipate development into imaging modern systems as reservoir analogs.
Posted by: Tip Meckel

Lab Assistant

Graduate or Undergraduate
Laboratory Assistants typically work in 3-5 hour blocks, helping researchers collect and process data on all techniques across the lab, as well as occasionally perform some of the few routine lab activities like carbon or gold coating, touch-up polishing, and billing.
Posted by: Phil Orlandini

Student and Postdoc Opportunities

Graduate or Undergraduate
I am always interested in adding motivated new students and postdocs to an exciting research team at the JSG. Please feel free to email me to ask about the latest opportunities. I highly value diversity in thought and experience, and students from underrepresented groups are strongly encouraged to apply.
Posted by: Daniel Trugman

Academic Seismic Portal at UTIG

Academic Seismic Portal at UTIG

The portal is the gateway to the Marine Seismic Data Center (MSDC). MSDC's goal is to support education and research with access to and preservation of academic active-source seismic data. Our partner, the Academic Seismic Portal at LDEO, has a complementary seismic inventory primarily of field data. These cooperating data centers, part of the Marine Geoscience Data System, are supported by the National Science Foundation.
Aerogeophysical Data

Aerogeophysical Data

The Institute for Geophysics shares data from a range of aerogephysical missions flown over Antarctica.
Aerogeophysical Systems

Aerogeophysical Systems

UTIG has developed, maintained, and operated a suite of aerogeophysical instrumentation since the early 1990s with continual improvements since inception. The suite was installed aboard a Dehavilland DHC-6 ("Twin Otter") up to 2005 and aboard a Basler BT-67 (a version of DC-3T -- a Douglas DC-3 refitted with turboprop engines) since 2008. The current instruments are: High Capability Radar Sounder (HiCARS); Multibeam, Scanning Photon Counting Lidar; Cesium Vapor Magnetometer; Gravimeter; Dual-frequency, carrier-phase Global Navigation Satellite Systems (GNSS); Laser Altimeter; Two GPS-aided Inertial Measurement Units; Three-Axis Fluxgate Magnetometer; System Control, Data Acquisition, and Real-time QC and Monitoring functions.
Airborne Optech LIDAR System

Airborne Optech LIDAR System

For fine-scale topographic mapping
Current Meter Archive

Current Meter Archive

We take existing moored current meter data, process it using a handful of MatLab routines, and output one tarfile containing all the data in one standardized format. We have included here (v. 1) data from OSU (Buoy Group and Deep Water Archive) as well as 7 different smaller datasets obtained from Carl Wunsch.
Devine Geophysical Test Site

Devine Geophysical Test Site

The 100-acre Devine Test Site (DTS) is located less than 50 miles southwest of San Antonio, Texas, in Medina County, Texas. The site is managed by the Exploration Geophysics Laboratory (EGL), an Industrial Associate Program at the Bureau of Economic Geology. It is a state-of-the-art public-domain geophysical research facility for academia and industry donated to the university in 1998 by BP. The test site is used for surface-based seismic and potential-field experiments performed in conjunction with downhole and crosswell experiments.
Down-hole Technologies for Ocean Drilling

Down-hole Technologies for Ocean Drilling

Researchers have engineered state-of-the-art equipment that facilitate the collection of down-hole measurements. These tools are: MDHDS - Motion De-Coupled Hydraulic Delivery System, a method for inserting penetrometers in borehole; T2P - Temperature 2 Pressure Probe, a penetrometer for measurement of pressure & temperature. See related website for more detail.
GeoMechanics Lab (BEG)

GeoMechanics Lab (BEG)

In the GeoMechanics lab we study pore-scale sediment and fluid behavior. In this lab are components to make experimental specimens through resedimentation from either powdered sediment or extracted core material. Using the sediment, this lab can measure permeability and porosity with constant rate of strain experiments using any of our three load frames rated from 10,000 to 40,000 pounds or examine flow-through permeability and failure dynamics using a triaxial system. This lab is also capable of measuring permeability in tight gas shales using a series of Quizix pumps rated to 10,000 psi. The GeoMechanics lab is also spearheading the design of the ‘temperature 2 pressure’ (T2P) probe and a motion-decoupled hydraulic delivery system (MDHDS), a borehole tool capable of measuring in-situ temperature and pressure while de-coupled from the vessel and reporting data in real time. This probe will be deployed on an upcoming IODP (Integrated Ocean Drilling Program) expedition.
Geometrics GEODE Seismograph Systems

Geometrics GEODE Seismograph Systems

The Department has 2 boxes (total 48 Channels) with 48 vertical phones and 16 3 component phones).
Geophysical Equipment for Glaciology

Geophysical Equipment for Glaciology

We have a custom built, low-frequency, short-pulse, ground-based radar system to image deep (>100 m) internal layers and the base of the ice sheet. Frequencies used with this system include 1, 2, 5 and 10 MHz. We also have a GSSI high-frequency (100MHz) ground-based radar system which can be used in several configurations and with a range of antennae frequencies. In addition, we have 7 GNSS GPS units for high-precision positioning, as well as multiple data loggers and time-lapse cameras for use in glaciological settings.

Geophysical Log Facility

Geophysics Software

Geophysics Software

Landmark and Geoquest software is used for processing and interpreting 3 dimensional seismic data.
Hockley Seismic Station

Hockley Seismic Station

Part of the USGS Seismic Network, the Hockley Station vault is 472 meters below surface in a salt mine. Site Geology: Located in the Willis Formation that is made of clay, silt, sand, and minor siliceous gravel. Deposited in the lower Pleistocene and is approximately 200 feet thick.
Hydrogeophysical Equipment

Hydrogeophysical Equipment

These tools include: 1) Electrical Resistivity Meter. The AGI SuperSting R8 IP is an 8-channel resistivity and induced polarization imaging system specially designed for large surveys where speed of data acquisition is of essence. Can be used for land applications with 6 m spacing, underwater applications with 2 m spacing, or boat-towed surveys with 1 to 5 m spacing. 2) Infrared Camera. The FLIR ThermaCAM SC640 is a high-resolution thermal infrared camera. The portable handheld radiometer (7.5 to 13 micron wavelength) takes images at 640x480 pixels at rates of down to 16 Hz. The precision of the camera is 0.08 C.
Ocean-Bottom Seismometer (OBS)

Ocean-Bottom Seismometer (OBS)

An Ocean-Bottom Seismometer (OBS) is a seismometer that can be deployed on the seafloor for weeks or months, recording either earthquakes or man-made seismic signals. To withstand pressures at large depth (up to 5500 m) in the oceans, all electronics of this instrument are kept inside a glass sphere which can withstand such pressures. The sensors of all instruments (discussed below) include a 3-component accelerometer and a hydrophone, all designed for seismic data with a dominant frequency near 10 Hz. The seismic data are recorded on flash memory. Correct timing of the seismic recording is provided by an accurate clock, which also resides inside the sphere. After a seismic study on the seafloor is complete, the instrument is brought back to the sea surface using an acoustic release mechanism. UTIG has long been involved in marine seismology. The development of a UTIG OBS instrument program began in 1978.
Optec Laser Scanners (ILRIS)

Optec Laser Scanners (ILRIS)

The Optec ILRIS Laser Scanners are part of the BEG RCRL/JSG consortium. They are state-of-the-art ground-based terrestrial laser scanning/mapping devices, that, when coupled with the Innovmetric Polyworks software, allows high-resolution mapping of earth-surface features,with accuracies of a few cm. These tools are part of the aresenal of tools that the RCRL uses to generate digital 3D earth models for carbonate reservoir analogs.
Portable Field Magnetometers

Portable Field Magnetometers

Geometrics 856 Proton Precession Magnetometer
Portable Gravimeters

Portable Gravimeters

We own two instruments: (1) LaCoste-Romberg G meter (precision ~50 microGals), and (2) ZLS Burris gravimeter (precision ~5 microGals).
Portable High-Resolution Multichannel Seismic System (MCS)

Portable High-Resolution Multichannel Seismic System (MCS)

UTIG owns and maintains elements of a self-contained, portable, high resolution multichannel seismic (MCS) system that has been used over the past several years in salt- and fresh-water depths from ~4m to over 1km, on vessels from 10m to 35m in length. The 24-channel system is designed to be transported worldwide and to be installed on vessels of opportunity. Survey design, navigation, data acquisition, and near real-time MCS processing can be performed on non-dedicated laptops in the field. Deployment and recovery of gear is done by hand, requiring as few as 3 persons. The only constraints on the system are weight limits of the vessel and electrical requirements of the dedicated air compressors. For platforms with insufficient electrical capabilities, a fuel-powered generator or air compressor can be rented as a substitute.
Portable Seismometers

Portable Seismometers

Broad-band Guralp seismographs for regional studies of the crust and mantle
R/V Lake Itasca

R/V Lake Itasca

UTIG owns and operates a 22' aluminum hulled research vessel, the R/V Lake Itasca. The Itasca is a custom built hull powered by twin 115 HP Honda outboard engines equipped with hydraulic steering. The vessel is equipped with a starboard side davit (Fig. 5) that has been used to deploy a variety of water column gear including CTDs, grab samplers, gravity corers, isokinetic water samplers and niskin bottle samplers. Generally the vessel operates in survey mode with a maximum of 3-5 persons onboard. The vessel is equipped with rack mounts that contain a Reson Seabat multibeam system. Other acoustic devices that have been towed by the Itasca include the UTIG CHIRP subbottom profiler, sidescan sonars, and acoustic Doppler current profilers. The R/V Lake Itasca has been used throughout the Gulf of Mexico in rivers, estuaries and the inner shelf in calm seas. It has also been transported as far afield as British Columbia (Fraser River). The vessel can be shipped worldwide in a standard shipping container.
Scanning Electron Microscope Lab (DGS)

Scanning Electron Microscope Lab (DGS)

Installed in 2008, this is a high-performance, 30 kV tungsten gun scanning electron microscope with a high resolution of 3.0 nm. The low vacuum mode allows for observation of specimens which cannot be viewed at high vacuum due to a non-conductive surface. This SEM has three detector systems - secondary electron (SE), backscattered electron (BSE), and X-ray EDS detectors.
Sonar Seafloor Mapping Systems

Sonar Seafloor Mapping Systems

The Institute maintains two sonar systems for seafloor mapping: 1) The Reson Seabat 7101 (aka 'WANDA') multibeam sonar. 2) The Edgetech 272-TD sidescan sonar¬a towed instrument that operates at either 100 kHz or 500 kHz. The 272-TD towfish is lightweight enough so that it can be deployed by one person, which makes this system ideal for use from smaller boats or ones where an onboard handling system is not available. We utilize a Coda Geosurvey DA500 acquisition unit ( http://www.codaoctopus.com).
Sub-Bottom Profiling Systems

Sub-Bottom Profiling Systems

UTIG owns and maintains an integrated sonar system for use in conducting Compressed High Intensity Radar Pulse (CHIRP) subbottom profiling of the upper sediment layers of the ocean bottom or various fresh water systems. The 3200-XS system was purchased in 2007 from Edgetech Corp. of West Wareham, MA (see www.edgetech.com) and can be deployed in water depths from ~2 m to >300 m with an optimum towing height of 3-5 m above seafloor. Deployment and recovery of the towfish can be done by shipboard winches for shallower deployments or a larger UTIG-owned Electro-Hydraulic winch. Constraints on vessel size are dependent on shipboard winches capability of handling either the large (190kg SB-512i) or small (76 kg SB-216S) towfish. Power control, navigation, video display, data acquisition and data storage are all performed by one topside processing unit. The system can be powered by 18-36 VDC or 110/240 VAC (auto-ranging). The system is presently comprised of: 3200-XS topside computer processor, 4-transducer SB-512i towfish, 1-transducer SB-216s towfish, electro-hydraulic winch with 500 m of armored tow cable, 3 shallow water tow cables of 10, 25, and 50 m length, GPS navigation system.
Superconducting Gravimeter Lab

Superconducting Gravimeter Lab

A GWR superconducting gravimeter (precision ~0.01 micrGals) configured to be transportable, used in hydrologic and other studies. This is usually deployed in the field for campaigns of months and longer.

Trimble Real Time Kinematic System

The Trimble RTK GPS system is a real-time kinematically corrected GPS surveying tool that allows mapping resolution of within a few cm in X, Y, and Z,so substantially more accurate than any standard hand-held GPS unit that has a vertical error commonly of several meters. This is part of the arsenal of tools that the RCRL uses to generate digital 3D earth models for carbonate reservoir analogs.
Vibroseis Seismic Sources

Vibroseis Seismic Sources

For both low and high frequency 3-axis shaking. These are managed through the NSF facility in Civil Engineering. Clark Wilson is a co-PI of this and they have used one of them to support a geophysics field camp last summer.

Center for Computational Geosciences & Optimization

The Center for Computational Geosciences and Optimization addresses modeling of the solid and fluid earth systems, with emphasis on large scale simulation and inversion on supercomputers. Problems of interest include forward and inverse modeling of regional and global seismic wave propagation, mantle convection, atmospheric and subsurface contaminant transport, ocean dynamics, and flow in porous media. Research in the CCGO is conducted jointly with collaborators from the Jackson School of Geosciences, other ICES centers, the College of Engineering, the Department of Computer Sciences, other universities including Carnegie Mellon, Penn, MIT, Columbia, and Emory, and Sandia National Labs. Related inverse and optimization problems in the mechanical and biomedical engineering sciences are also being pursued.

Center for Planetary Systems Habitability

The Center for Planetary Systems Habitability is an interdisciplinary research center at UT and is the result of a partnership between the Jackson School, the College of Natural Sciences, and the Cockrell School of Engineering. The center advances our ability to search for life on other planets by collaborating on research that helps better understand where habitable zones develop and how they evolve within planetary systems.

EDGER Forum (Exploration & Development Geophysics Education & Research)

The Edger Forum is a consortium of industry participants sponsoring Education & Research in Exploration Geophysical Technology.

Exploration Geophysics

The Exploration Geophysics Laboratory (EGL) develops a wide range of technologies using all components of the seismic wavefield, including seismic field-recording techniques, data-processing and data-interpretation procedures, for improved reservoir characterization and prospect evaluation.

Network for Earthquake Engineering Simulation

The George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) is a national, networked, simulation resource that includes geographically-distributed, shared-use, next-generation experimental research Equipment Sites built and operated to advance earthquake engineering research and education through collaborative and integrated experimentation, theory, data archiving, and model-based simulation. The goal of NEES is to accelerate progress in earthquake engineering research and to improve the seismic design and performance of civil and mechanical infrastructure systems through the integration of people, ideas, and tools in a collaboratory environment. Open access to and use of NEES research facilities and data by all elements of the earthquake engineering community, including researchers, educators, students, practitioners, and information technology experts, is a key element of this goal.

PLATES

A program of research into plate tectonics and geologic reconstructions, the PLATES Project is supported by an industry consortium. Our primary objectives are to model past and present plate movement, compile comprehensive databases, develop plate motion computer software and apply plate motion models.

Reservoir Characterization Research Laboratory

The Reservoir Characterization Research Laboratory (RCRL) seeks to use outcrop and subsurface geologic and petrophysical data from carbonate reservoir strata as the basis for developing new and integrated methodologies to better understand and describe the 3-D reservoir environment.

Texas Consortium for Computational Seismology

The mission of the Texas Consortium for Computational Seismology is to address the most important and challenging research problems in computational geophysics as experienced by the energy industry while educating the next generation of research geophysicists and computational scientists.

TexNet Seismic Monitoring Program

In the 84th Legislative Session, the Texas Legislature tasked us with helping to locate and determine the origins of earthquakes in our State, and, where they may have been caused by human activity, helping to prevent them from occurring in the future. We have established the TexNet earthquake monitoring program to accomplish these goals, and we plan to place earthquake monitoring stations across Texas to gather information about and study these events as they occur. We want to help inform Texas citizens so that they can keep their property safe from the impact of earthquakes.

Affiliated UT Programs & Centers

Center for Space Research

The University of Texas at Austin, Center for Space Research was established in 1981 under the direction of Dr. Byron D. Tapley. The mission of the Center is to conduct research in orbit determination, space geodesy, the Earth and its environment, exploration of the solar system, as well as expanding the scientific applications of space systems data.

Texas Advanced Computing Center

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is one of the leading centers of computational excellence in the United States. Located on the J.J. Pickle Research Campus, the center's mission is to enable discoveries that advance science and society through the application of advanced computing technologies.
Posted by Marcus Gary
Photos of research of the Sistema Zacaton karst area