Sedimentary Geology/Geomorphology

The Jackson School of Geosciences is home to one of the largest and most diverse sedimentology & stratigraphy faculties in the nation. When U.S. News & World Report last ranked sedimentology & stratigraphy graduate programs, UT Austin was No. 1. The program has a long tradition of excellence. It is the birthplace of depositional systems analysis, a fundamental approach for relating the spatial distribution of sedimentary rocks to their environments of deposition and a school of thought that has been widely influential in both academia and industry.


Major advances in the petrology and diagenesis of sedimentary rocks can also be tied to the program. Marine geology and geophysics has become an equally strong component through expertise across the Jackson School. The program was among the first to use multichannel seismic reflection techniques to understand the geologic history of continental margins around the world, and has pioneered the academic use of 3D seismic imaging for a variety of applications, from basin history and evolution to reservoir assessment. The program is currently focused in the areas of global change, geochemistry and diagenesis, sequence stratigraphy, seismic stratigraphy and geomorphology, surficial processes and sedimentary process modeling, and pore-scale to full field reservoir characterization.

The sedimentology/stratigraphy research community at JSG includes over 30 Ph.D. faculty, research scientists, and senior research scientists spread across the Department of Geological Sciences, Bureau of Economic Geology, and Institute for Geophysics. This group provides as wide a range of areas of research specialization as any similar program in the nation.

The Department of Geological Sciences group has core areas in seismic and sequence stratigraphic analysis of both clastic and carbonate systems, diagenesis and geochemistry of carbonates and clastics including extensive stable and radiogenic isotope labs, physical and numerical modeling of eolian, fluvial, and shallow to deep marine transport systems with an emphasis on the construction of sedimentary deposits, petrology, basin analysis, and the application of field, petrologic, chemical, and isotopic methods for studying chemical evolution of groundwater and ancient oceans.

The Institute for Geophysics is focused on large multidisciplinary research programs looking at 2D and 3D geophysical studies of stratigraphic evolution of marine and lacustrine basins worldwide. The sedimentology/stratigraphy group at the Institute makes use of a wide range of geophysical tools and datasets to attack problems of global geodynamics and climate change.

The Bureau of Economic Geology has research efforts in clastic and carbonate sequence stratigraphy, diagenesis and reservoir characterization, as well as seismic geomorphologic analysis of 3D seismic data, visualization of subsurface systems, mudrock depositional systems, basin-forming processes, and classic and digital outcrop analysis. They are working on basins and outcrop areas all over the world to answer questions concerning the fundamental processes that act to control rock properties in the subsurface.

Faculty & Research Scientists

William A Ambrose

William A Ambrose

Sedimentology, subsurface mapping of clastic depositional systems, oil and gas production analysis, coalbed methane
James A Austin

James A Austin

Stratigraphic evolution of a wide range of marine and lacustrine environments around the world
M Bayani Cardenas

M Bayani Cardenas

Hydrology and Hydrogeology
Jacob A Covault

Jacob A Covault

sedimentology, stratigraphy, marine geology
Peter P Flaig

Peter P Flaig

Research Focus: Cretaceous Western Interior Seaway of North America, North Slope-Alaska, Central Transantarctic Mountains-Antarctica, Canada,- Clastic sedimentology - Fluvial sedimentology - Paleoenvironmental reconstruction of continental to shallow-marine systems using sedimentology, stratigraphy, architecture, and ichnology in outcrop studies - Photography and high-resolution imagery (e.g. LiDAR, GigaPan) of clastic systems - Paleopedology - Remote logistics.
Peter B Flemings

Peter B Flemings

Stratigraphy, basin analysis, basin-scale fluid flow, pore pressures in seafloor sediments, submarine landslides, oil and gas migration, methane hydrates, Integrated Ocean Drilling Program (IODP)
Qilong  Fu

Qilong Fu

Sedimentology and stratigraphy, petrology of sedimentary rocks, reservoir characterization
Craig S Fulthorpe

Craig S Fulthorpe

Marine geology, sedimentary geology, seismic stratigraphy and sedimentary architecture of continental margins, sequence stratigraphy and sea-level variation.
John A Goff

John A Goff

Seafloor morphology and bathymetry, swath sonar mapping, stratigraphy of the shallow seabed, ultra-high resolution seismic reflection (chrip) systems, sedimentary horizons, sea ice draft, crustal heterogeneity, canyon morphology on continental slopes, abyssal hills
Timothy A Goudge

Timothy A Goudge

Remote sensing; surface processes; geomorphology; sedimentology; reflectance spectroscopy; martian surface geology; planetary science.
Sean S Gulick

Sean S Gulick

Tectonic processes, tectonic-climate interactions and geohazards of convergent margins and transitional tectonic environments Role of catastrophism in the geologic record including impact cratering, hurricanes, and tectonic events Marine geophysical imaging at nested resolutions and ground truth through drilling, coring, logging, and submersibles
Brian K Horton

Brian K Horton

Tectonics of sedimentary basins, evolution of orogenic systems, sediment provenance and routing systems, nonmarine depositional processes.
Susan D Hovorka

Susan D Hovorka

Geologic carbon sequestration in deep sedimentary environments as part of carbon capture and storage. PI of the Gulf Coast Caron Center (www.gulfcoastcarbon.org) focused on research relevant to commercial development of geologic sequestration in regions where it is both needed and possible. Monitoring field projects. Petrography and sedimentology supporting hydrogeology in karst and contaminated systems. K-12 and public outreach and education.
Xavier  Janson

Xavier Janson

Carbonates sedimentology and sequence stratigraphy, petrophysics of carbonate, seismic signature of carbonate rock, seismic modeling, carbonate modern depositional environment
Joel P Johnson

Joel P Johnson

Process geomorphology, feedbacks between channel morphology and hydrology and sediment transport, landscape sensitivity to climate and lithology, bedrock river erosion, flash floods, arroyo erosion, canyon formation, environmental monitoring and sensor networks, laboratory flume experimentation, numerical modeling, tsunami sediment transport and deposition.
Charles  Kerans

Charles Kerans

Carbonate sequence stratigraphy, depositional systems, reservoir characterization, basin analysis, seismic interpretation, seismic stratigraphy, paleokarst analysis, carbonate diagenesis
J. Richard Kyle

J. Richard Kyle

Ore deposits geology, strata-controlled mineral resources, metals & industrial minerals exploration, ore petrology, characterization of ore-forming fluids, high resolution X-ray computed tomography applications to ore genesis & processing, geology of energy critical elements, resources & society, geology & mineral resources of Texas
Toti E Larson

Toti E Larson

Robert G Loucks

Robert G Loucks

Research in carbonate, sandstone, and mudrock stratigraphy, sedimentology, diagenesis, reservoir characterization, and pore network analysis.
Rowan C Martindale

Rowan C Martindale

Triassic and Jurassic reef paleoecology, mass extinctions (Triassic-Jurassic, 201 Ma), carbon cycle perturbation events in deep time, ocean acidification in deep time, Oceanic Anoxic Events, invertebrate paleontology (corals, sponges, algae, microbes), Mesozoic marine communities and ecosystems, exceptional fossil preservation (Lagerstätten), paleoecology, carbonate petrography, warm-water and cool-water carbonate (eco)systems, low-temperature geochemistry.
Nathaniel R Miller

Nathaniel R Miller

Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate [link: http://www.jsg.utexas.edu/news/2018/05/new-research-suggests-that-dawn-of-plate-tectonics-could-have-turned-earth-into-snowball/] [/link]
Kitty L Milliken

Kitty L Milliken

Petrography and geochemistry of siliciclastic rocks; diagenesis; electron microbeam methods: X-ray mapping, cathodoluminescence imaging; micro-scale reservoir characterization
Cornel  Olariu

Cornel Olariu

Clastic Sedimentology, Stratigraphy, Depositional Environments, Basin Analysis
Jeffrey G Paine

Jeffrey G Paine

Near-surface geophysics in hydrogeology and environmental and Quaternary geology; coastal geology; Quaternary geology and geomorphology; computer applications in the geological sciences
Terrence M Quinn

Terrence M Quinn

Paleoclimate, climate, climate change, climate dynamics, paleoclimatology, paleoceanography, sedimentary geology and geochemistry
Daniella M Rempe

Daniella M Rempe

Hydrology, Geomorphology, Ecohydrology, Catchment Hydrology, Near-surface Geophysics, Hydrogeology
Timothy M Shanahan

Timothy M Shanahan

Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific stable isotope analysis
John W Snedden

John W Snedden

Sequence Stratigraphy, Sedimentology, Reservoir Development and Connectivity, Petroleum Geoscience
Frederick W Taylor

Frederick W Taylor

Tectonic geomorphology, stratigraphy, and paleogeodesy/paleoseismology at convergent plate margins Paleoclimate, fossil corals as a proxy for past sea-surface temperatures. Corals as recorders of relative sea level for vertical tectonics and sea-level history.
Scott W Tinker

Scott W Tinker

Global energy supply and demand, Technology Administration, Multidisciplinary reservoir characterization, Carbonate sedimentology, Sequence stratigraphy, 3-D reservoir modeling, Resource assessment.
Michael H Young

Michael H Young

Ecohydrology of arid and semiarid landscapes; groundwater recharge in both managed agriculture and natural (arid and semi-arid) systems; influence of soil structure and vegetation on water cycling; design and implementation of monitoring systems for above-ground and near-surface below ground environments.
Hongliu  Zeng

Hongliu Zeng

Seismic sedimentology; seismic geomorphology; seismic and sequence stratigraphy; Characterization of thin-bed reservoirs; seismic chrono-stratgraphy

Postdoctoral Researchers

Si Chen

Federico Galster

Tectonic; Geochronology, Stratigraphy, Biochronology

Tingwei (Lucy) Ko

Source Rock Characterization Geochemistry (Organic, Biomarker, Gas Isotope) Mudrock Characterization Petrography, SEM
Jasmine  Mason

Jasmine Mason

fluvial geomorphology, sediment transport, coastal rivers, bed forms, bar forms, backwater zone, deltas
Drew Muscente

Drew Muscente

In general, I have expertise in paleontology/paleobiology, geobiology, sedimentary geology, evolution, and ecology. My main areas of interest are community paleoecology, taphonomy, and paleoenvironmental reconstruction. [italic]Please visit my website for more information on my research[/italic]: [link:https://admuscente.com/][bold]www.admuscente.com[/bold][/link]
Manasij  Santra

Manasij Santra

Natural gas hydrate systems, deepwater depositional processes and architecture of deepwater deposits, basin-margin clinoform shape and stacking pattern, stratigraphy of clastic shelf margins, stratigraphy of basins under influence of halokinetic movement, reservoir modeling, basin modeling.
Zachary T Sickmann

Zachary T Sickmann

Basin Analysis, Convergent Margin Tectonics, Source-to-Sink Sediment Dispersal, Provenance Analysis, Sedimentology in the Anthropocene
Gaia  Stucky de Quay

Gaia Stucky de Quay

Planetary Surface Processes; Fluvial Geomorphology; Erosion and Uplift; Land-Climate Interactions; Early Mars; Terrestrial Analogs; Volcanic Islands; Geochronology.
Jinyu  Zhang

Jinyu Zhang

Source-to-sink sediment transport, numerical modeling, sedimentary geology, basin analysis

Adjunct/Emeritus Faculty​ & Research Scientists

William L Fisher

William L Fisher

Basin analysis, sequence stratigraphy, depositional systems, petroleum geology, resource assessment, energy policy
Gary A Kocurek

Gary A Kocurek

Sedimentology, geomorphology and stratigraphy of aeolian systems; fluid flow and grain transport; bedform dynamics and pattern evolution of dune fields; the stratigraphic record of aeolian and related systems on Earth and Mars.
James T Sprinkle

James T Sprinkle

Invertebrate paleontology; evolutionary biology; fossil and living echinoderms; echinoderm systematics; Paleozoic marine communities and ecosystems; paleoecology; crinoids; blastoids; rhombiferans; eocrinoids; parablastoids; blastozoans; edrioasteroids; edrioblastoids; starfish; stylophorans; ctenocystoids; helicoplacoids; Cambrian evolutionary fauna; Paleozoic evolutionary fauna; Ordovician radiation; Cambrian explosion; environment & earth science
Robert H Tatham

Robert H Tatham

Dr. Tatham's research is presently on interpretation and analysis of multi-component seismic data. In particular, by considering both seismic P-wave and S-wave data, many of the effects of solid rock properties and pore-fluid properties may be separated.

Research Staff

Gillian Apps

Deepwater stratigraphy and sedimentology The interaction betwwen structural and depositional processes Engines of slope processes
Amy A Banerji

Amy A Banerji

Stratigraphy, Aquifer / Reservoir Characterization, Water / Energy Resource Evaluation, Petroleum geology

Sara Elliott

Tucker F Hentz

Tucker F Hentz

Siliciclastic sequence stratigraphy, sandstone petrology, continental depositional systems, field mapping and stratigraphy

Francis Peel

Salt Tectonics Gulf of Mexico Seismic Interpretation Salt Deposition RIsk and probability in exploration Fold and Thrust Belts Deepwater systems
Ramon Trevino

Ramon Trevino

Sequence stratigraphic interpretations (well logs, 3-D seismic), integrated reservoir characterization, subsurface correlation and mapping (using workstation and PC) and subsurface structural interpretation (using 3-D seismic), project management, CO2 sequestration
Christopher K Zahm

Christopher K Zahm

Reservoir characterization, flow modeling in fractured reservoirs, porosity-permeability evolution

Graduate Students

Rawan Alasad

Rawan Alasad

I study the sedimentary record, surficial processes, tectonic relief and catchment evolution that occurs during rifting.

Emily Bamber

I am a PhD student in the Planetary Surface Processes lab [link:http://www.jsg.utexas.edu/goudge/][/link] My current research addresses the past hydrological evolution of impact crater lakes on Earth, Mars and elsewhere with fieldwork, satellite observations and modelling.
Kristina  Butler

Kristina Butler

Amanda Z Calle

Amanda Z Calle

My research is focused on the Cenozoic sedimentary, structural and exhumational history of the Eastern Cordillera to modern Chaco foreland basin in southern Bolivia. A multidisciplinary approach of source-to-sink, geochronology, low-temperature thermochronology and structural mapping will be used. Inherited pre-Andean structures and their response to contractional settings will also be evaluated to decipher the Cenozoic evolution of this part of the Central Andes.
Benjamin T Cardenas

Benjamin T Cardenas

sedimentary geology | geomorphology | planetary science [bold]Publications[/bold] Cardenas, Mohrig, and Goudge, 2018, Fluvial stratigraphy of valley fills at Aeolis Dorsa, Mars: Evidence for base-level fluctuations controlled by a downstream water body. GSA Bulletin, 130, 484-498. Goudge, Mohrig, Cardenas, Hughes, and Fassett, 2018, Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus, 301, 58-75. Kocurek, Martindale, Day, Goudge, Kerans, Hassenruck-Gudipati, Mason, Cardenas, Petersen, Mohrig, Aylward, Hughes, and Nazworth, in press, Antecedent aeolian dune topographic control on carbonate ...
Dallas B Dunlap

Dallas B Dunlap

Quantitative Clastics Laboratory, Geologic Subsurface Mapping, Deepwater Depositional Processes
Abdulah  Eljalafi

Abdulah Eljalafi

Abdulah s research focuses on understanding depositional and stratigraphic processes of carbonate platforms. His research focuses on deciphering the architectural relationships of mid Cretaceous carbonate platforms in mexico from a depositional standpoint based on field mapping. Other Interests include microbialite morphology, field stratigraphy, and invertebrate paleontology.

Kyle W Fouke

Yuqian(Philomena) Gan

I have broad interests in sedimentology and stratigraphy with focus on: Slope channel architecture and evolution Sediment density flow processes and deposits Sequence stratigraphy of medium depth (200-500m) back-arc and foreland systems
Hector K Garza

Hector K Garza

Eric J Goldfarb

Check out my research website! Eric.Goldfarb.ca.


Kiara  Gomez

Kiara Gomez

I am generally interested in the applications of biological markers (biomarkers) and geochemistry to address questions in geology

Evelin G Gutierrez

My Master's thesis involves stratigraphy, geochronology, and provenance analysis of the basin-fill deposited during orogenesis, as well as seismic structural analyses. My thesis presents 1,500 new detrital zircon U-Pb ages from Upper Cretaceous and Cenozoic clastic formations to provide maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units that span critical timeframes during orogenesis in the Ecuadorian Andes.
Hima J Hassenruck Gudipati

Hima J Hassenruck Gudipati

[bold] Research Interest[/bold]: geomorphology, sedimentology, hydrology
Scarlette  Hsia

Scarlette Hsia

PhD student in Geology at the University of Texas at Austin! My primary interests include carbonate facies mapping, sedimentology, paleo-sea level reconstruction, stratigraphy, STEM outreach, canoeing, and scuba diving. If you are an undergraduate student seeking research opportunities and advice, feel free to contact me!
Harry L Hull

Harry L Hull

Cullen D Kortyna

I am interested in the routing of sediment from its erosional source to depositional sink. To investigate this, I use a combination of geo/thermochronologic and sedimentological/stratigraphic methods. Source-to-sink studies are important as a method for understanding landscape evolution, and investigating tectonic and climatic controls on sediment transport and delivery from source to basin.

Yejin Lim

Landon  Lockhart

Landon Lockhart

Landon's research is focused on characterizing the pressures and stresses in complex geologic settings. Specifically, his research integrates geomechanical modeling, experimental analysis, and field data at the Mad Dog Field, deepwater Gulf of Mexico. The title of Landon's thesis is "New Pore Pressure Prediction Workflow to Capture the Effects of Mean Effective Stress and Deviatoric (shear) stress at the Mad Dog Field." Landon has also recently developed a new online software tool (UT-FAST-P^3) to predict ...
Joshua Malone

Joshua Malone

My PhD research investigates sedimentary basin development associated orogenic processes along convergent plate margins in Northern Patagonia. I utilize methodologies in structural geology, sedimentology, stratigraphy, and geochronology to investigate basin evolution and mountain building processes. Recent and ongoing research projects include: - Paleozoic basin evolution in Northern Patagonia - Falklands/Malvinas basin evolution & tectonic history - Detrital zircon provenance of Oligocene White River deposits in the Bighorn Mountains, Powder River Basin, and Black Hills. My ...
Patrick (Kevin) Meazell

Patrick (Kevin) Meazell

I am a deepwater sedimentologist and stratigrapher. My research focuses on the deposition of clastic, methane hydrate-bearing reservoirs in the deepwater Gulf of Mexico. I study these deposits at the basin- to grain-scale. During my time at the Jackson School of Geosciences I have helped to plan and execute the drilling of multiple wells as part of the UT led GOM2 project (https://ig.utexas.edu/energy/genesis-of-methane-hydrate-in-coarse-grained-systems/expedition-ut-gom2-1/).
Paul Morris

Paul Morris

Advised by Professor David Mohrig, Dr Jake Covault and Dr Zoltan Sylvester. Working with the Quantitative Clastics Lab. Using forward stratigraphic models coded in python to understand and quantify the evolution of (deep-water) channel-belt stratigraphy. Linking the movement and morphology of channels to their resultant deposits - exploring resulting issues around reservoir connectivity (flow behavior) for Oil/Gas extraction. Quantitative PhD with coding skills a core component. I have spent Summers 2017 through 2019 working as an ...

Mariel Nelson

Sean  O'Donnell

Sean O'Donnell

My research interests are in the areas of volcanology and igneous petrology. I am currently researching aspects of the caldera forming eruption of Crater Lake, OR. I am using field and laboratory methods to understand volcanologic and petrologic processes that occurred during different stages of the eruption, and determining how these processes can occur in volcanoes around the world. In the past, I have used experimental methods to study pyroclastic flow dynamics and used petrologic ...
Fritz Palacios

Fritz Palacios

Junwen  Peng

Junwen Peng

Junwen Peng received his B.S. degree in resource exploration engineering (petroleum geology) from China University of Geosciences (Wuhan) in 2013. In 2016, he graduated from China University of Petroleum (Beijing) with an M.S. degree in geological resources and geological engineering (petroleum geology). He is now a doctoral candidate in geology at the University of Texas at Austin. His current research interests include heterogeneity characterization and genetic mechanism of deep water fine-grained sedimentary rocks.
Sebastian  Ramiro ramirez

Sebastian Ramiro ramirez

Sebastian started his PhD program at UT in 2016. He is interested in petrographic, geochemical and petrophysical studies of mudrocks, and is currently working on porosity and permeability experiments in the Wolfcamp and Bone Spring formations, Delaware Basin.
Evan J Ramos

Evan J Ramos

My research incorporates stable isotope geochemistry, reactive transport modeling, field work, and hydrology to understand the geologic carbon cycle. Whether deep in the crust or at the Earth's surface, I see the physics and chemistry of fluid-rock interactions as a unifying lens to probe whole-Earth geochemical cycles. I have worked on several projects related to skarn formation, namely on how oxygen isotope compositions of garnets record open-system fluid-rock interactions (link to publication [link:https://agupubs....
Catherine  Ross

Catherine Ross

I study punctuated events in Earth's history using field observations, geo/thermochronology, microstructural analysis, and geochemistry. I am broadly interested in how deformation and sedimentation on the seconds to days timescales are expressed in the rock record. My first project involves [bold]dating the Chicxulub target rock[/bold], which is important to advancing the understanding of ejecta and environmental processes. The Yucatàn basement target rock has a debated tectonic history, but is suggested to ...
Cole M Speed

Cole M Speed

I am a PhD student working in the Quantitative Clastics Laboratory (QCL) at the Bureau of Economic Geology. Broadly, my research interests lie in the sedimentology and stratigraphy of clastic depositional systems. I am currently studying both modern and ancient fluvial deposits, planform channel-belt evolution, and the connection between morphodynamic process and stratigraphic architecture. I utilize fieldwork, time-lapse remote sensing data, and reduced complexity models to understand how fluvial landscapes change through time and how ...
John M Swartz

John M Swartz

Research interests: Sedimentology/stratigraphy, coastal and nearshore processes, quantitative geomorphology, marine geophysics, statistical methods in geoscience
Murat  Tamer

Murat Tamer

Geo-thermochronology

Michelle Tebolt

Melianna Ulfah

My academic and industrial experiences are my journey in contributing to provide adequate energy while giving back to the environment. I possess theoretical and practical skills in mining, petroleum, and environment sectors, and I strive to solve challenging problems in energy from various perspectives. As a geophysicist currently working on Carbon Capture and Sequestration project, my career objective is to support the energy transition, by making the current dominant sources of energy cleaner.

David Wiggs

Kat Wilson

Kat Wilson

coastal geomorphology
Charlie (Yu-Chen)  Zheng

Charlie (Yu-Chen) Zheng

Graduate and undergraduate research in geologic sequestration of CO2

Graduate or Undergraduate
Gulf Coast Carbon Center supports a team of students and post docs working in geologic sequestration (deep subsurface long-duration storage) of the major greenhouse gas CO2, as a method to reduce release to the atmosphere. Student projects are wide ranging, from sedimentology to policy, linked in that they are 1) multidisciplinary and 2) applied to current issues. Students are typically jointly supervised by faculty in geology or petroleum geosystems engineering and staff at the GCCC. A class in geologic sequestration is offered in the fall some years.
Posted by: Susan Hovorka

Innovative Detrital Provenance Studies - Double Dating PLUS

Graduate
A major thrust of my current research the development and application of more comprehensive isotopic detrital provenance tools. U-Pb on zircon is clearly the big work horse, but only goes so far and sometimes yields "no" useful info, e.g., if the source of the sediment is mostly recycled sediment. We have extensively pursued double dating of zircons by U-Pb and He, as zircon He ages yield very interesting insights into the thermal and tectonic history of the source terrane; often yielding very different insights than crystallization ages. The combination is powerful, but I think we can take things so much farther by combining double dating with other constrains. People have tried fission track (not precise enough), Hf/Hf (to get mantle separation model ages), etc., but what we want to do and are working on is really Double Dating ++, combining zircon U-Pb-He dating with a variety of other geochemical aspects to more comprehensive understand detrital provenance and improve paleo-tectonic reconstructions. For example, trace-element thermometry (Ti in zirc), REE on zircon (met vs mag origin), Hf/Hf (see above), oxygen isotopes, etc. and also to develop rutile in an analogous manner (e.g., Zr in rut thermometry, Cr/Nb ratio (mafic vs granulitic), REE, etc.). The sky is the limit and what can learn so much. The issue in part it, how much can a single grain tell us before it's gone? The project sounds very laboratory oriented, but it's really a combination of field and lab work. We have identified a few possible case study areas, e.g., Morocco; great exposures, long-lived and preserved record of basin deposition since the Precambrian. My group is already working on some case studies in NW Himalayas, the N & S Pyrenees, the Sevier FTB, Permian Basin and other foreland basin. New projects include provenance studies along rifted and passive continental margins such the Gulf of Mexico, the central Atlantic Margins in Canada, USA, Portugal, and Morocco.
Posted by: Daniel Stockli

Research in structural geology and diagenesis

Graduate or Undergraduate
Fundamental and applied research on fractures, particularly as these studies apply to petroleum reservoirs, is conducted under the auspices of the Fracture Research and Application Consortium at The University of Texas at Austin. The academic program of research, mentoring and teaching is led by staff of the Bureau of Economic Geology, the Department of Petroleum & Geosystems Engineering and the Department of Geological Sciences. Students in the Energy & Earth Resources Graduate Program also participate in FRAC sponsored research projects. For further information on opportunities for fracture studies within the program see the FRAC pages on opportunities in Geology, Petroleum Engineering, Geophysics, and Energy Economics. FRAC welcomes Visiting Scientists from industry and from other academic institutions. Contact Steve Laubach for more information about these opportunities. A key part of the FRAC academic program is the Structural Diagenesis Initiative, a new teaching and mentoring perspective on interacting mechanical and chemical processes at high crustal levels in the Earth. For more information on the initiative see the Structural Diagenesis Initiative web site. If you are a prospective student, please see the admissions information on the Petroleum & Geosystems Engineering or Jackson School of Geosciences web sites.
Posted by: Stephen Laubach

High Resolution 3D marine seismic for fluid studies

Graduate
Opportunities exist to become involved in the design, acquisition, processing, and interpretation of high-resolution 3D marine seismic data. Current applications include characterization for subsurface storage of carbon dioxide and natural fluid migration studies. We anticipate development into imaging modern systems as reservoir analogs.
Posted by: Tip Meckel

Postdoctoral Fellow

Graduate - ongoing
Purpose of position: To conduct research in numerical simulation of fluid flow using both traditional Darcy flow simulators as well as Invasion Percolation methods, sandbox flow modeling, and development of a strong publication record on the topic. Essential functions: Develop numerical simulations of fluid flow CO2 in mm to m scale models informed by geologic depositional heterogeneity. Assist in designing and implementing laboratory validation experiments of sandbox flow modeling to support theoretical and numerical simulations. Publish results in peer reviewed outlets, assist in project reporting and make presentations, as needed to support project. Required qualifications: PhD in hydrogeology, environmental engineering, or closely related geoscience field earned within the last three years. Relevant laboratory experience with sandbox scale flow experiments. Demonstrated research interest in forward and inverse modeling of subsurface flow and transport pertaining multi-phase flow. Preferred qualifications Demonstrated strong oral and written communication skills. Demonstrated ability to conduct experimental studies. Demonstrated experience in presenting and publishing results, including CO2 or CCS.
Posted by: Tip Meckel

PhD Student

Graduate
I am accepting applications for a new PhD Student in my lab. This student must be interested in paleontological or carbonate sedimentology research (both would be best), and should be aware of the current/recent projects in the Martindale Lab. Exceptional MSc students will be considered, but preference is for a doctoral student (prior research experience at the undergraduate or MSc level is desired).
Posted by: Rowan Martindale

Prospective Students

Graduate or Undergraduate
Thank you for your interest in joining my research group! There are currently opportunities at all levels beginning in the Fall of 2016. I welcome the opportunity to work with students who have a strong academic record, quantitative skills, research and writing experience, and unquenchable curiosity and creativity. Our group focuses on spatial and temporal patterns of water movement in the near surface. If you're interested in joining the lab, please contact me directly (rempe@jsg.utexas.edu) with a CV and a statement of your research experience and interests.
Posted by: Daniella Rempe

Lab Assistant

Graduate or Undergraduate
Laboratory Assistants typically work in 3-5 hour blocks, helping researchers collect and process data on all techniques across the lab, as well as occasionally perform some of the few routine lab activities like carbon or gold coating, touch-up polishing, and billing.
Posted by: Phil Orlandini

Applied Geodynamics Lab

Applied Geodynamics Lab

An industry-funded consortium dedicated to producing innovative new concepts in salt tectonics. This research comprises a mix of physical and mathematical modeling and seismic-based mapping and structural-stratigraphic analysis of some of the world's most spectacular salt basins.

Carbonate Petrography Lab

The lab is a combined effort of the Department of Geological Sciences and the Bureau of Economic Geology's Carbonate Reservoir Characterization Research Laboratory. The lab contains tools for characterization of carbonate outcrops including the most recent version of the Optech Ilris long-range ground-based LIDAR system and a full suite of interpretation software and high-end workstations using Innovmetric Polyworks, Petrel, GoCad, and standard ARC software tools. Other tools include low- and high-magnification petrographic scopes, digital photographic capabilities, and a cold-cathode microscope setup with low-light-capable photomicroscopy. An extensive collection of samples from classic carbonate field areas both modern and ancient is also available for comparative analysis.
Core Research Center (Austin)

Core Research Center (Austin)

The Austin Core Research Center (CRC), located adjacent to Bureau headquarters, is the Bureau of Economic Geology's main core repository for core and rock material donated to the university. More than 500,000 boxes of core and cuttings from wells drilled throughout Texas, the U.S., and the world are available at this facility for public viewing and research. Austin, Houston, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. The Integrated Core and Log Database (IGOR) is a searchable database for all CRC core and well cutting holdings. Public facilities include core examination layout rooms and processing rooms for slabbing core. Other services are available upon request.
Core Research Center (Houston)

Core Research Center (Houston)

The Houston Research Center (HRC), is located on the west side of Houston, Texas, six miles north of I-10 and two miles south of U.S. Highway 290. This state-of-the-art climate-controlled facility is equipped to permanently store and curate over 900,000 boxes of geologic core and cuttings. The Houston, Austin, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. In addition to the climate-controlled core and cuttings warehouse, the HRC complex has offices, laboratories, and a well-lit core layout room available for visiting scientists. There are also two conference rooms to accommodate guests attending short courses and seminars. Other services are available upon request. Nominal fees are charged to rent table space and to view core. The HRC has space dedicated for storing samples and cores acquired by NSF-funded research. The HRC curates this material and facilitates continued access to the material by researchers. The Integrated Core and Log Database (IGOR) is a searchable database for all core and well cutting holdings.
Core Research Center (Midland)

Core Research Center (Midland)

The Midland Core Research Center (MCRC) contains nearly 500,000 boxes of core and cuttings available for public viewing and research. Midland, Austin, and Houston core facilities have combined holdings of nearly 2 million boxes of geologic material. The Integrated Core and Log Database (IGOR) is a searchable database for all CRC core and well cutting holdings. Public facilities include core examination layout rooms and processing rooms for slabbing core.
Devine Geophysical Test Site

Devine Geophysical Test Site

The 100-acre Devine Test Site (DTS) is located less than 50 miles southwest of San Antonio, Texas, in Medina County, Texas. The site is managed by the Exploration Geophysics Laboratory (EGL), an Industrial Associate Program at the Bureau of Economic Geology. It is a state-of-the-art public-domain geophysical research facility for academia and industry donated to the university in 1998 by BP. The test site is used for surface-based seismic and potential-field experiments performed in conjunction with downhole and crosswell experiments.
Fluid Inclusion Lab (DGS)

Fluid Inclusion Lab (DGS)

The fluid inclusion laboratory is based around a modified USGS-type gas-flow heating/freezing stage capable of microthermometry of fluid inclusions over a range of 700° to -180°C. The stage is mounted on an Olympus BX51 microscope with a 40X long-working distance objective, 2X image magnifier, and digital camera for image capture. The microscope also has capability for UV fluorescence petrography. Complementary facilities are available for reflected and transmitted light petrography and image capture.
GeoMechanics Lab (BEG)

GeoMechanics Lab (BEG)

In the GeoMechanics lab we study pore-scale sediment and fluid behavior. In this lab are components to make experimental specimens through resedimentation from either powdered sediment or extracted core material. Using the sediment, this lab can measure permeability and porosity with constant rate of strain experiments using any of our three load frames rated from 10,000 to 40,000 pounds or examine flow-through permeability and failure dynamics using a triaxial system. This lab is also capable of measuring permeability in tight gas shales using a series of Quizix pumps rated to 10,000 psi. The GeoMechanics lab is also spearheading the design of the ‘temperature 2 pressure’ (T2P) probe and a motion-decoupled hydraulic delivery system (MDHDS), a borehole tool capable of measuring in-situ temperature and pressure while de-coupled from the vessel and reporting data in real time. This probe will be deployed on an upcoming IODP (Integrated Ocean Drilling Program) expedition.
Geometrics GEODE Seismograph Systems

Geometrics GEODE Seismograph Systems

The Department has 2 boxes (total 48 Channels) with 48 vertical phones and 16 3 component phones).

Geophysical Log Facility

Geophysics Software

Geophysics Software

Landmark and Geoquest software is used for processing and interpreting 3 dimensional seismic data.

Grain-sizing Sedimentology Lab

This laboratory contains Ro-tap seiving apparatus, a Micromeritics 5100 clay and silt size x-ray analyzer, and an automated settling column for sizing sand fraction.
Nano Geosciences Lab

Nano Geosciences Lab

NanoGesociences Lab is equipped with state-of-the-art atomic force microscopy (AFM) and a set-up for accurate measurements of fluid flow and nanoparticle (NP) transport in porous media. We use AFM (1) to study surface features on geological samples such as nanopores in shale samples, (2) to measure interactive forces between different fluid molecules and pore walls in shales and (3) to measure adhesion parameters of nanoparticles to the minerals. With the flow system, we study transport and retention of NP in porous media at flow conditions.
Optec Laser Scanners (ILRIS)

Optec Laser Scanners (ILRIS)

The Optec ILRIS Laser Scanners are part of the BEG RCRL/JSG consortium. They are state-of-the-art ground-based terrestrial laser scanning/mapping devices, that, when coupled with the Innovmetric Polyworks software, allows high-resolution mapping of earth-surface features,with accuracies of a few cm. These tools are part of the aresenal of tools that the RCRL uses to generate digital 3D earth models for carbonate reservoir analogs.

Radioisotope Counting Lab

This laboratory contains gamma and alpha spectrometers for measuring radioistope activities in sediment and water samples.
Scanning Electron Microscope Lab (BEG)

Scanning Electron Microscope Lab (BEG)

The Bureau houses two SEMs devoted primarily to research on unconventional reservoirs under projects supported by industry consortia (FRAC, MSRL, RCRL) and by government-sponsored programs (STARR, GCCC). One is a conventional SEM devoted to wide-area mosaic mapping for the study of microscale fracture populations in tight formations. The other is a high-resolution instrument largely devoted to the study of gas shales.
Sub-Bottom Profiling Systems

Sub-Bottom Profiling Systems

UTIG owns and maintains an integrated sonar system for use in conducting Compressed High Intensity Radar Pulse (CHIRP) subbottom profiling of the upper sediment layers of the ocean bottom or various fresh water systems. The 3200-XS system was purchased in 2007 from Edgetech Corp. of West Wareham, MA (see www.edgetech.com) and can be deployed in water depths from ~2 m to >300 m with an optimum towing height of 3-5 m above seafloor. Deployment and recovery of the towfish can be done by shipboard winches for shallower deployments or a larger UTIG-owned Electro-Hydraulic winch. Constraints on vessel size are dependent on shipboard winches capability of handling either the large (190kg SB-512i) or small (76 kg SB-216S) towfish. Power control, navigation, video display, data acquisition and data storage are all performed by one topside processing unit. The system can be powered by 18-36 VDC or 110/240 VAC (auto-ranging). The system is presently comprised of: 3200-XS topside computer processor, 4-transducer SB-512i towfish, 1-transducer SB-216s towfish, electro-hydraulic winch with 500 m of armored tow cable, 3 shallow water tow cables of 10, 25, and 50 m length, GPS navigation system.

Trimble Real Time Kinematic System

The Trimble RTK GPS system is a real-time kinematically corrected GPS surveying tool that allows mapping resolution of within a few cm in X, Y, and Z,so substantially more accurate than any standard hand-held GPS unit that has a vertical error commonly of several meters. This is part of the arsenal of tools that the RCRL uses to generate digital 3D earth models for carbonate reservoir analogs.
UT Experimental Deep Water Basin

UT Experimental Deep Water Basin

The UTDW Basin is an experimental tank designed to physically model morphodynamic and stratigraphic evolution of continental margins and other subaqueous sediment transport systems. It is 4 m wide, 8 m long, and 2 m deep. The tank has 5 observation windows, underwater lighting and an array of synced overhead cameras. The facility is designed to map underwater deposit surfaces in space through time and measure fluid dynamic and sediment transport properties of formative density flows.

Wind Tunnel/Flume Lab

The Department of Geological Sciences maintains two wind tunnels for experiments in aeolian transport. One tunnel (0.5 m2 X 10 m) features a long transport section that ends in a slipface. The second tunnel features a rotating table (1 m in diameter) that can be used to simulate any range of wind directions.

Center for Planetary Systems Habitability

The Center for Planetary Systems Habitability is an interdisciplinary research center at UT and is the result of a partnership between the Jackson School, the College of Natural Sciences, and the Cockrell School of Engineering. The center advances our ability to search for life on other planets by collaborating on research that helps better understand where habitable zones develop and how they evolve within planetary systems.

Gulf Coast Carbon Center

The Gulf Coast Carbon Center (GCCC) seeks to apply its technical and educational resources to implement geologic storage of anthropogenic carbon dioxide on an aggressive time scale with a focus in a region where large-scale reduction of atmospheric releases is needed and short term action is possible.

Bars in Tidal Environments

EDGER Forum (Exploration & Development Geophysics Education & Research)

The Edger Forum is a consortium of industry participants sponsoring Education & Research in Exploration Geophysical Technology.

Fracture Research and Application Consortium

The Fracture Research and Application Consortium (FRAC) is an alliance of scientists from the Bureau and the departments of Petroleum and Geosystems Engineering and Geological Sciences that seeks fundamental understanding of fractures and fracture processes dedicated to conquering the challenges of reservoir fractures.

Gulf Basin Depositional Synthesis Project

The UT Gulf Basin Depositional Synthesis Project (GBDS) is an ongoing, industry-supported, comprehensive synthesis of Cenozoic fill of the entire Gulf of Mexico basin. The results are distributed as a digital data base that is updated regularly. The project has led to major new contributions to the understanding of the depositional history and framework of the Gulf of Mexico Basin. The project has focused on refining sequence correlations between the continental margin and deep basin stratigraphies, mapping sedimentary transport axes and paleogeographies through time, defining the evolving roles of submarine canyons, retrogradational margins, and shelf-margin delta systems in localizing in time and space sand transport to the slope and abyssal plain, and better understanding regional controls on reservoir facies and their deposition.).

Latin America & Caribbean Energy Program

The Latin America & Caribbean Energy Program will create, foster and maintain a regional outreach network that will nurture cooperative and frank discussions of issues related to sustainable development of energy resources and environmental stewardship. The network will include representatives from governments, universities, private sector, multilateral agencies, industry and professional associations and other stakeholders.

Mudrock Systems Research Laboratory

The Mudrock Systems Research Laboratory (MSRL) is dedicated to the twin goals of unraveling fundamental scientific aspects of the most common sedimentary rock type and devising applications of this understanding to the characterization of an important and growing unconventional resource.

Quantitative Clastics Laboratory

The Quantitative Clastics Laboratory (QCL) carries out geologic studies of the processes, tectonics, and quantitative morphology of basins around the world, with research that emphasizes the use of mega-merged 3D seismic data sets for quantitative seismic geomorphologic study of the basin fill, evaluation of source-to-sink relationships between the shelf, slope and deep basin and analyses of the influence of tectonics and fluids on the evolution of these complex continental margin settings.

Reservoir Characterization Research Laboratory

The Reservoir Characterization Research Laboratory (RCRL) seeks to use outcrop and subsurface geologic and petrophysical data from carbonate reservoir strata as the basis for developing new and integrated methodologies to better understand and describe the 3-D reservoir environment.

Structural Diagenesis Initiative

Structural diagenesis is a new perspective on interaction of mechanical and chemical processes at high crustal levels in the Earth. SDI promotes the growth of this new discipline.

UT GeoFluids

The UT GeoFluids studies the state and evolution of pressure, stress, deformation and fluid migration through experiments, theoretical analysis, and field study. This industry-funded consortium is dedicated to producing innovative concepts that couple geology and fluid flow.

Affiliated UT Programs & Centers

Center for Frontiers of Subsurface Energy Security

CFSES is one of only two centers out of 46 EFRCs with focus on subsurface energy. Our goal is a scientific understanding of the physical, chemical, and biological subsurface processes from the very small scale to the very large scale so that we can predict the behavior of CO2 and other byproducts of the energy production that may need to be stored in the subsurface. At this aim, we need to integrate and expand our knowledge of subsurface phenomena across scientific disciplines using both experimental and modeling methodologies to better understand and quantify the behavior at conditions far from equilibrium. The unique aspect of our research is the approach of the uncertainty and of the complexity of the fluids in the geologic media from the molecular scale to the basin scale and their integration in computational tools to better predict the long term behavior of subsurface energy byproduct storage.

UT Austin Energy Institute

The Energy Institute has been established at the University of Texas at Austin to provide the State of Texas and the Nation guidance for sustainable energy security through the pursuit of research and education programs - good policy based on good science. The Institute will determine the areas of research and instruction in consultation with an Institute Advisory Board, faculty and staff at the University of Texas at Austin, the private energy sector, public utilities, non-governmental organizations, and the general public. The economic future of the State of Texas, and our Nation, depends upon the viability of sustainable energy resources. The mission of the Energy Institute is to provide the transformational changes through research and instruction that are required for this State's and Nation's sustainable energy security.

Research Groups

Dynamic Stratigraphy Workgroup

Morphodynamics and Quantitative Stratigraphy

Posted by Peter P Flaig
Photo set includes images of fieldwork done on the North Slope of Alaska from 2005-2013 Posted by Peter P Flaig
Photos of fieldwork in the Central Transantarctic Mountains during the 2003-2004 and 2010-2011 field seasons. Posted by Peter P Flaig
Photos of fieldwork on clastic wedges of the Cretaceous Western Interior Seaway in Utah, Colorado, and Wyoming