Faculty & Research Scientists


William A AmbroseWilliam A Ambrose
Sedimentology, subsurface mapping of clastic depositional systems, oil and gas production analysis, coalbed methane
David K ArcturDavid K Arctur
Geographic Information Systems and Database Management Systems, with focus of interest in standards for interoperability of data and models for multidisciplinary geosciences research (water resources, climate, and geohazards in particular). Data and model semantics, and digital preservation of physical samples are crosscutting subthemes of interest.
James A AustinJames A Austin
Stratigraphic evolution of a wide range of marine and lacustrine environments around the world
Jay L BannerJay L Banner
Isotopic methods, groundwater, oceans, ancient oceans, climate change, aquifers, caves, environmental science, geochemistry, paleoclimatology
Whitney  BehrWhitney Behr
Mechanics and kinematics of deformation in continental lithosphere, rheology of the crust and upper mantle, mechanisms of strain localization, experimental rock mechanics, tectonic geomorphology and long term slip rates on large-scale strike-slip faults.
Philip C BennettPhilip C Bennett
Aqueous geochemistry, geomicrobiology, environmental and microbial geochemistry, hydrogeology
Todd  CaldwellTodd Caldwell
Dr. Caldwell is a hydrologist and geoscientist specializing in field investigations and numerical modeling associated with near-surface vadose zone hydrology, landscape evolution, and soil moisture/ET. His current research focuses on ecohydrology, soil moisture modeling and monitoring, restoration and characterization of disturbed lands, the characterization and scaling of soils and hydraulic parameters, near-surface geophysics, and parameter optimization and numerical methods.
M Bayani CardenasM Bayani Cardenas
Hydrology and Hydrogeology
Ginny CataniaGinny Catania
Ice sheet mass balance, ice dynamics, subglacial hydrology, ice sheet stratigraphy, radar, GPS methods, uncertainty in ice sheet response to climate.
Robert E DickinsonRobert E Dickinson
Climate, Global Warming, Land Surface Processes, Remote Sensing, Hydrological Cycle, Carbon Cycle, and Modeling.
Ian J DuncanIan J Duncan
Expertise in geomechanic and geochemistry applied to: risks associated with CO2 sequestration; hydraulic fracturing for shale gas production; environmental impact of hydraulic fracturing; and the water-energy nexus. Current research focuses on the scientific, environmental and public policy aspects of unconventional natural gas production, the water-energy nexus, and carbon capture and storage. He has a particular interest in risk analysis, decision making, and legal/regulatory issues related to fracing, CO2 sequestration, CO2-EOR, and energy production.
Andras  FallAndras Fall
Fluids in diagenetic and hydrothermal systems, Fluid inclusion techniques, Fracture analysis, Structural diagenesis, Unconventional hydrocarbon reservoirs, Raman spectroscopy
William L FisherWilliam L Fisher
Basin analysis, sequence stratigraphy, depositional systems, petroleum geology, resource assessment, energy policy
Peter P FlaigPeter P Flaig
Research Focus: North Slope-Alaska, Central Transantarctic Mountains-Antarctica, Canada, Cretaceous Western Interior Seaway of North America - Clastic sedimentology - Fluvial sedimentology - Paleoenvironmental reconstruction of continental to shallow-marine systems using sedimentology, stratigraphy, architecture, and ichnology in outcrop studies - Photography and high-resolution imagery (e.g. LiDAR, GigaPan) of clastic systems - Paleopedology - Remote logistics.
Peter B FlemingsPeter B Flemings
Stratigraphy, basin analysis, basin-scale fluid flow, pore pressures in seafloor sediments, submarine landslides, oil and gas migration, methane hydrates, Integrated Ocean Drilling Program (IODP)
Gregory  FrebourgGregory Frebourg
Sedimentology, sedimentary processes, sedimentary dynamics, depositional environments, micropaleontology, mudrocks, carbonates, siliciclastics
Rong  FuRong Fu
Terrestrial biosphere-atmosphere interaction and its role in climate Distributions and transport of water vapor and chemical tracers in the troposphere and stratosphere Convection, cloud and precipitation processes Atmosphere, ocean and land interaction Satellite remote sensing applications and retrievals
Craig S FulthorpeCraig S Fulthorpe
Marine geology, sedimentary geology, seismic stratigraphy and sedimentary architecture of continental margins, sequence stratigraphy and sea-level variation.
James E GardnerJames E Gardner
Volcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies
Omar  GhattasOmar Ghattas
Computational geoscience and engineering, simulation and optimization of complex solid, fluid, and biomechanical systems, inverse problems, optimal design, and optimal control
John A GoffJohn A Goff
Seafloor morphology and bathymetry, swath sonar mapping, stratigraphy of the shallow seabed, ultra-high resolution seismic reflection (chrip) systems, sedimentary horizons, sea ice draft, crustal heterogeneity, canyon morphology on continental slopes, abyssal hills
Sean S GulickSean S Gulick
Studies of convergent margins to examine tectonic influences, structural deformation, fluid flow, and earthquake hazards; imaging and geologic sampling of in situ tectonic and crater laboratories: microplates, triple junctions, transitional plate boundaries, and bolide impacts; and quantitative high-resolution marine geological and geophysical studies of tectonic and climate interactions on glaciated orogenic margins.
Ursula  HammesUrsula Hammes
Sequence stratigraphy, Mudrock analyses, Carbonate and clastic sedimentology, Seismic and wire-log interpretation
Jack HoltJack Holt
Mars ice and paleoclimate, Antarctica, glaciers, airborne and orbital geophysics, hydrogeophysics, paleomagnetism. See Jack's research group webpage: http://www.ig.utexas.edu/people/staff/jack/mrg/
Brian K HortonBrian K Horton
Tectonics of sedimentary basins, evolution of orogenic systems, sediment provenance and routing systems, nonmarine depositional processes.
Seyyed Abolfazl HosseiniSeyyed Abolfazl Hosseini
Research interests are mainly topics related to fluid transport in porous media. Current research includes: Enhanced Oil Recovery - Enhanced Gas Recovery - Upscaling and Upgridding - Above Zone Monitoring Interval - Reservoir Simulation and History Matching - Unconventional Reservoirs
Xavier  JansonXavier Janson
Carbonates sedimentology and sequence stratigraphy, petrophysics of carbonate, seismic signature of carbonate rock, seismic modeling, carbonate modern depositional environment
Joel P JohnsonJoel P Johnson
Process geomorphology, feedbacks between channel morphology and hydrology and sediment transport, landscape sensitivity to climate and lithology, bedrock river erosion, flash floods, arroyo erosion, canyon formation, debris flows, environmental monitoring and sensor networks, laboratory flume experimentation, numerical modeling, tsunami sediment transport and deposition.
Wonsuck  KimWonsuck Kim
Quantitative stratigraphy, Shoreline dynamics, Morphodynamcis, Sediment transport, Deltaic sedimentation, River delta restoration, Coupled mathematical modeling and experimental stratigraphy, Planetary surface processes.
Gary A KocurekGary A Kocurek
Sedimentology, geomorphology and stratigraphy of aeolian systems; fluid flow and grain transport; bedform dynamics and pattern evolution of dune fields; the stratigraphic record of aeolian and related systems on Earth and Mars.
Stephen E LaubachStephen E Laubach
Structural diagenesis, structural geology, fracture analysis, fluid inclusion and cathodoluminescence studies, rock mechanics, mechanical and fracture stratigraphy, hydrocarbon exploration and development in deep and/or structurally complex areas, tight gas sandstone, coalbed methane, shale gas; geologic aspects of hydraulic fracturing, application of borehole-imaging geophysical logs to stress and fracture evaluation, structural evolution of North American Cordillera, fracture history of NW Scotland, regional fracture studies Argentina.
Luc L LavierLuc L Lavier
Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Joe LevyJoe Levy
Permafrost, Antarctica, Planetary geology, Mars, Geomorphology, Remote Sensing, GIS
Robert G LoucksRobert G Loucks
Research in carbonate, sandstone, and mudrock stratigraphy, sedimentology, diagenesis, reservoir characterization, and pore network analysis.
Rowan C MartindaleRowan C Martindale
Triassic and Jurassic reef paleoecology, mass extinctions (Triassic-Jurassic, 201 Ma), carbon cycle perturbation events in deep time, ocean acidification in deep time, invertebrate paleontology (corals, sponges, algae, microbes), Mesozoic marine communities and ecosystems, exceptional fossil preservation, paleoecology, carbonate petrography, warm-water and cool-water carbonate (eco)systems, low-temperature geochemistry.
Kitty L MillikenKitty L Milliken
Petrography and geochemistry of siliciclastic rocks; diagenesis; electron microbeam methods: X-ray mapping, cathodoluminescence imaging; micro-scale reservoir characterization
Kevan  MoffettKevan Moffett
David  MohrigDavid Mohrig (Theme Lead)
Sedimentary Geology, Sedimentology, Stratigraphy, Geomorphology, Rivers, Deltas, Coastlines, Submarine Channels, Geohazards, Sediment-Gravity Currents, Sediment Transport, Seismic Interpretation, Basin Analysis
Hardie S NanceHardie S Nance
Stratigraphy, structural geology, hydrogeology, sedimentology
Jean-Philippe NicotJean-Philippe Nicot
Subsurface hydrology, numerical modeling and optimization of groundwater resources, multiphase flow and contaminant transport in both the unsaturated and saturated zones, geochemistry modeling and subsurface reactive transport, Mathematical geology, geostatistics, inverse modeling, optimization, risk assessment and risk analysis
Maria-Aikaterini  NikolinakouMaria-Aikaterini Nikolinakou
Maria-Katerina Nikolinakou is currently a Research Associate at the Bureau of Economic Geology, Jackson School of Geosciences, at the University of Texas at Austin. She works for the AGL and GeoFluids consortia. Maria is a Civil/Geotechnical Engineer. She received her Science Doctorate on Theoretical Soil Mechanics from MIT in 2008. She holds a M.Sc. in Geotechnical Engineering from MIT and a Civil Engineering degree from NTUA, Greece. Before joining the Jackson School, she worked ...
Cornel  OlariuCornel Olariu
Clastic Sedimentology, Stratigraphy, Depositional Environments, Basin Analysis
Christopher R OmelonChristopher R Omelon
Bacteria-mineral interactions; microbial biosignatures; polar and desert environments; cyanobacteria; electron microscopy; synchrotron radiation.
Jeffrey G PaineJeffrey G Paine
Near-surface geophysics in hydrogeology and environmental and Quaternary geology; coastal geology; Quaternary geology and geomorphology; computer applications in the geological sciences
Suzanne A PierceSuzanne A Pierce
Integrated Water Resources Management Decision Support Systems Sustainability Science Energy-Water Groundwater Management Participatory Modeling
Mary F Poteet
karst ecosystems, biotic response and vulnerability to climate change, invasive species
Katherine D RomanakKatherine D Romanak
Geochemistry and isotope systematics of carbon cycling in the vadose zone and in freshwater aquifers; soil-gas monitoring and surface gas flux measurements at CO2 sequestration sites; microbial influences on carbon geochemistry in the shallow subsurface; fate and transport of organic contaminants.
Timothy B RoweTimothy B Rowe
Vertebrate paleontology, evolution and development of the vertebrate skeleton, phylogenetic systematics, the early history of mammals and their extinct relatives among Synapsida, the history of birds and their extinct relatives among Dinosauria, the history of other amniotes, high-resolution X-ray computed tomography, CT scanner, DigiMorph, informatics
Stephen C RuppelStephen C Ruppel
Mudrock systems sedimentology, stratigraphy, and rock attributes; Paleozoic depositional systems and basin analysis; carbonate reservoir characterization; conodont biostratigraphy and 87Sr/86Sr chemostratigraphy, carbonate sedimentology and geochemistry
Bridget R ScanlonBridget R Scanlon
Evaluation of the impact of climate variability and land use change on groundwater recharge, application of numerical models for simulating variably saturated flow and transport, controls on nitrate contamination in aquifers
Timothy M ShanahanTimothy M Shanahan
Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific stable isotope analysis
John M SharpJohn M Sharp
Hyrdogeology; flow in fractured rocks; thermohaline free convection; fracture skin effects; regional flow in carbonate rocks; hydrology of arid and semi-arid zones; subsidence and coastal land loss; effects of urbanization; alluvial aquifers; hydrogeology of sedimentary basins;hydrological processes in ore deposit formation; and hydrogeophysics.
John W SneddenJohn W Snedden
Sequence Stratigraphy, Sedimentology, Reservoir Development and Connectivity, Petroleum Geoscience
Ronald J SteelRonald J Steel
Dr. Steel's research is aimed at using clastic sedimentology to address problems in basin analysis, dynamic stratigraphy and clastic reservoirs. I am particularly interested to decipher the signatures of tectonics, climate, sea level change and sediment supply in stratigraphic successions.
Daniel  StockliDaniel Stockli
Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Alexander  SunAlexander Sun
Subjects: Carbon sequestration, hydrological modeling, computational geoscience, fracture/fault modeling Skill sets: Geostatistical modeling, inversion and optimization algorithms, numerical modeling, web-based decision support systems Programming: Matlab, Python, Fortran, C, ArcGIS
Frederick W TaylorFrederick W Taylor
Tectonic geomorphology and stratigraphy at convergent plate margins Paleoclimate, fossil corals as a proxy for past sea-surface temperatures.
Matthew M UlianaMatthew M Uliana
Water resources, low-temperature aqueous geochemistry, groundwater modeling
Jake WalterJake Walter
ice sheet and glacier dynamics, tectonic tremor and slow slip, earthquakes, seismic triggering of earthquakes and other phenomena
Clark R WilsonClark R Wilson
Geophysics, including gravity, space geodesy, and applied seismology
Brad WolaverBrad Wolaver
Lesli J WoodLesli J Wood
Outcrop analysis of clastic systems architecture and sequence stratigraphy; seismic geomorphology and sedimentology of clastic systems; tectonics and sedimentation of active margin basins; shallow hydrocarbon features and shale diapirism; remotely sensed study (lidar, 2-D, 3-D and multicomponent seismic multibeam bathymetry and sonar) of clastic depositional systems.
Zong-Liang  YangZong-Liang Yang
Dr. Yang's primary research interest is to understand the exchanges of momentum, radiation, heat, water, carbon dioxide, and other materials between the atmosphere and the Earth surface spanning from small (short) to very large (long) scales. This includes analysis of in-situ and remotely-sensed data for the Earth's surface, and modeling studies of weather, climate and hydrology at local, regional and global scales.
Michael H YoungMichael H Young
Ecohydrology of arid and semiarid landscapes; groundwater recharge in both managed agriculture and natural (arid and semi-arid) systems; influence of soil structure and vegetation on water cycling; design and implementation of monitoring systems for above-ground and near-surface below ground environments.
Duncan A YoungDuncan A Young
Ice-rock physical interactions in an ice cap context, tectonic evolution of the younger planetary crusts

Postdoctoral Researchers


Owen A AnfinsonOwen A Anfinson
Specializes in the use of heavy mineral geochronology and thermochronology to understand the geologic evolution of sedimentary basins and their source regions. Past Research Topics Include: Ph.D.- New Insights into Arctic Tectonics: U-Pb, (U-Th)/He, and Hf Isotopic data from the Franklinian Basin, Canadian Arctic Islands; M.S.- Sediment Sources for Catastrophic Glacial Outburst Flood Rhythmites and Quaternary Eolian Deposits at the Hanford Reach National Monument, Washington; B.A.- Stratigraphy and ...
George B FisherGeorge B Fisher
Tectonic and Fluvial Geomorphology, Cosmogenic and Fallout Radionuclides, Remote Sensing, Spatial Analyses
Cyril Grima
Feras A Habbal
Ryan McKenzieRyan McKenzie
I am broadly interested in Earth surface system evolution, thus my research focuses on sedimentary geology, geochemistry, and paleontology. My field-based projects utilize integrative methods that include detrital zircon geochronology and provenance, carbonate isotope geochemistry, paleontology and biostratigraphy.
Kimberly L MillerKimberly L Miller
Mauricio M PerilloMauricio M Perillo
Sedimentary Geology, Process Sedimentology, Stratigraphy, Geomorphology, Subaqueous Bedforms, Sediment Transport, Wave-Current Interaction, Fluid Dynamics, Coastlines and Sediment-Gravity Currents.
Krista M SoderlundKrista M Soderlund
Astrobiology, Cryosphere, Geophysical Fluid Dynamics, Magnetohydrodynamics, Planetary Science

Adjunct/Emeritus Faculty​ & Research Scientists


Mead A AllisonMead A Allison
Sedimentology of upper continental margin, microfabric of modern sediments, Quaternary geologic evolution and sedimentary processes of deltas, geochronology, radioisotopes as tracers of sediment accumulation, sediment transport, remote sensing analysis of coastal geological processes, seafloor mapping, contaminated sediment depocenters and transport mechanisms
Marcus GaryMarcus Gary
Karst Hydrogeology
Lorena G MoscardelliLorena G Moscardelli
James T SprinkleJames T Sprinkle
Invertebrate paleontology; evolutionary biology; fossil and living echinoderms; echinoderm systematics; Paleozoic marine communities and ecosystems; paleoecology; crinoids; blastoids; rhombiferans; eocrinoids; parablastoids; blastozoans; edrioasteroids; edrioblastoids; starfish; stylophorans; ctenocystoids; helicoplacoids; Cambrian evolutionary fauna; Paleozoic evolutionary fauna; Ordovician radiation; Cambrian explosion; environment & earth science

Research Staff


Mead A AllisonMead A Allison
Sedimentology of upper continental margin, microfabric of modern sediments, Quaternary geologic evolution and sedimentary processes of deltas, geochronology, radioisotopes as tracers of sediment accumulation, sediment transport, remote sensing analysis of coastal geological processes, seafloor mapping, contaminated sediment depocenters and transport mechanisms
Edward W CollinsEdward W Collins
geologic mapping; environmental geology
Bruce L CutrightBruce L Cutright
Katherine K EllinsKatherine K Ellins
Geoscience education, outreach, K-12 programs, diversity programs, public information.
Rodrigo A Fernandez-VasquezRodrigo A Fernandez-Vasquez
Glacial geology, marine geology, tectonics, tectonics-climate-glacial interactions, sedimentary processes on fjords, rivers and coastal environments, paleomagnetism (block rotations, anisotropy of susceptibility). Current Spatial/Temporal areas of research: Cz/Pleistocene-Holocene of Patagonia and the Antarctic Peninsula.
Tucker F HentzTucker F Hentz
Siliciclastic sequence stratigraphy, sandstone petrology, continental depositional systems, field mapping and stratigraphy
Eric W JamesEric W James
Isotope geochemistry, igneous petrology, analytical chemistry
Joseph A MacgregorJoseph A Macgregor
glaciology, radar, geophysics
Nathaniel R MillerNathaniel R Miller
Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate
Lorena G MoscardelliLorena G Moscardelli
Jiangfeng  WeiJiangfeng Wei
Land-atmosphere interactions, hydrology, water cycle

Graduate Students


Khushboo Arora
The main purpose of my current research is to study the influence of long-period surface gravity waves on sediment transport and deposition of hummocky cross-stratified deposits on marine shelves. An integrated study of paleo-hydraulic analysis and reservoir architecture of hummocky cross-stratified sands is critical for achieving a greater understanding of shelf sands deposited in shoreface and deeper settings. An improved understanding of how these sands and muds distribute themselves in the shelf settings with varying ...
Kevin M BefusKevin M Befus
Kevin is studying hydrology for two reasons: its demand scientifically and its relevance globally. Kevin uses a combination of fieldwork and numerical modelling studies to explore groundwater quantity and quality at various scales. Currently, Kevin is investigating groundwater residence times in aquifers from process-based and sustainability-oriented perspectives. Kevin has studied coastal groundwater-surface water interactions both in lake and beach settings. His previous research includes studying the effects of glacial isostasy on paleo-lake hydrology and applying ...
Alyse C Briody
Alyse's research focuses on characterizing the hyporheic zone of Austin's Lower Colorado River and the subsurface biogeochemistry that occurs there. Her broader research interests include groundwater-surface water interactions, snow hydrology, and water resource availability.
Thomas C BrothersThomas C Brothers
My research focuses on the interpretation of remotely sensed data to investigate the surface geomorphology and subsurface stratigraphic record of planetary bodies. I make extensive use of orbital radar soundings, high resolution satellite imagery, and digital elevation models. My research involves processing, interpreting and integrating observations from multiple types of remotely sensed data in collaboration with other researchers to deduce the evolution of planetary surfaces. Throughout my dissertation, my research has been focused on applying ...
Meredith A Bush
Meredith is a fourth year PhD student, focusing on the evolution of contractional mountain belts and intra-continental basins. Meredith is interested in the tectonics of sedimentary basins in intra-continental settings, clastic sedimentology and provenance analysis. Her current field areas include the Qaidam basin on the Tibetan Plateau, the Raton basin in Colorado and New Mexico, and the Galisteo-El Rito basin of New Mexico. Her research includes a variety of analytical techniques, including magnetostratigraphy, detrital mineral ...
Xitian  CaiXitian Cai
My research interests: land surface hydrology, land surface modeling, and nitrogen modeling. My current research is to couple a nitrogen model with the Noah-MP land surface model to support environmental modeling and prediction.
Amanda Z CalleAmanda Z Calle
My research is focused on the Cenozoic sedimentary, structural and exhumational history of the Eastern Cordillera to modern Chaco foreland basin in southern Bolivia. A multidisciplinary approach of source-to-sink, geochronology, low-temperature thermochronology and structural mapping will be used. Inherited pre-Andean structures and their response to contractional settings will also be evaluated to decipher the Cenozoic evolution of this part of the Central Andes.
Benjamin T CardenasBenjamin T Cardenas
sedimentary geology, Mars
Kuldeep Chaudhary
I am an expert in pore-scale computational fluid dynamics (CFD) and in doing so, I can obtain hydraulic parameters which can then be used for basin scale flow or reservoir simulators. Both single phase and two phase fluid flow simulation can be performed using different numerical methods as a means to obtain solution to Navier-Stokes equations. I also conduct laboratory drainage-imbibition experiments at reservoir conditions, a set-up of which I have designed myself, both to ...
Mackenzie D Day
Katie DelbecqKatie Delbecq
Katie's research focuses on physical modeling of tsunami flows and sediment deposits, with interests in paleotsunami field studies and flow reconstruction of ancient tsunamis, storm surge, and floods from preserved deposit characteristics.
Joshua F Dixon
My dissertation focuses on the analysis of the architecture, stratigraphy, sedimentology of shelf-edge deltas and the connectivity between these features and other depositional systems on the adjacent slope and basin floor. Primarily through the study of outcrop examples of shelf-edge strata, my work addresses the role of processes at the shelf edge in delivery of sediment to the deep water, a fundamental step in the formation of deep-water hydrocarbon reservoirs.
Baiyuan Gao
Baiyuan is currently working on pore pressure prediction within dipping reservoirs. She will systematically study the effects of reservoir relief, mudstone properties, and 3D geometry on reservoir pressure. She will also develop simple approaches to predict the in-situ reservoir pressure.
Sarah George
Sarah is a first year masters student focused on the interplay between regional tectonics and sedimentation. Specifically, she is working on elucidating the timing and mechanisms of shortening, exhumation, and basin evolution in the Andes of northern Peru. Methods include field work, U-Pb geochronology and (U-Th)/He thermochronology.
Brad T Gooch
I am a PhD student working at the University of Texas Institute for Geophysics. I am researching the importance of basin-scale groundwater flow, geothermal heat flow, and geomechanics on the dynamics of the East Antarctic Ice Sheet via numerical modeling and geophysical observations. My expertise/interests include: * Physical Hydrogeology * Near-Surface/Reservoir Geophysics * Cryospheric Science * Crustal Heat Flow * Basin Analysis * Geomechanics * Reservoir Characterization, Modeling, and Monitoring * Inverse Theory
Kealie GoodwinKealie Goodwin
Research Interests: Fluvial Geomorphology, Sediment Transport, Flash Floods, Laboratory Experiments, Ephemeral Channels, Bed Surface Armoring Dissertation: Flash Floods and Unsteady Flows: Sediment Transport, Turbulence, and Bed Surface Armoring (working title) Committee: Joel Johnson, David Mohrig, Wonsuck Kim, Paola Passolaqua, Johnathan Laronne
Eric J Guiltinan
Christopher K Hendrix
Michelle  HulewiczMichelle Hulewicz
Lily  JacksonLily Jackson
My current research focuses on determining timing and magnitude of major paleo-elevation changes affecting the Peruvian Andes. My current methods include detrital zircon geochronology, hydrogen stable isotope paleoaltimetery with volcanic glasses, and traditional methods in sedimentology.
Allan E Jones
Matthew  KaufmanMatthew Kaufman
Matt studies fundamental questions about the physical, chemical, and biological processes which work together to control all aspects of groundwater and surface water. In particular, he is interested in the the dynamic processes present at the interfaces between groundwater and surface water.
Brian A KielBrian A Kiel
Using remotely collected data to measure attributes of modern rivers and ancient river deposits. Currently focusing within the contiguous US, and modeling river-groundwater interaction as it relates to contaminant transport.
Jenna Kromann
I am interested in studying the dynamics of surface water-groundwater interactions and karst hydrogeology. Currently, I am researching the Nueces River in Uvalde County, investigating the interaction between surface water and groundwater. Focusing on: estimating the amount of recharge into the Edwards Aquifer using innovative technologies, determining the controls on gains and losses in the river, and investigating the effects of gravel alluvium on aquifer recharge. Then combining collected data to develop a water balance ...
Yonghwan Kwon
Yejin Lim
Faith S MartinezFaith S Martinez
Jasmine  MasonJasmine Mason
fluvial geomorphology, sediment transport, coastal rivers, bedforms, point bars, backwater zone, deltas
Anthony McGlownAnthony McGlown
Colin J McNeece
Brendan P MurphyBrendan P Murphy
Dissertation Research Topic: The influence of spatially variable climate on landscape evolution, Kohala Peninsula, Hawai'i Research interests include: landscape evolution, chemical & physical weathering, bedrock channels, sediment/soil production, sediment transport, and applications of LiDAR for high-resolution topographic change detection.
Allison M Ned
Michael T O'connorMichael T O'connor
I am studying hydrology and biogeochemistry, with an emphasis on wet systems. My thesis investigates a water and nitrogen balance within the islands of the Wax Lake Delta in southern Louisiana. I am advised by Dr. Kevan Moffett.
Lindsay OlindeLindsay Olinde
Interests: Studying fluvial geomorphology, focusing on feedbacks between stream morphology and sediment transport with interest in incorporating hydrologic research into resource management and public policy as well as science outreach education. My dissertation field work focuses on setting up stream monitoring in Reynolds Creek Experimental Watershed, near Murphy, ID. Other field campaigns during my PhD have also included the Kohala Peninsula, HI and the Henry Mountains, UT. Background: My PhD research includes developing technologies to ...
Sagar P ParajuliSagar P Parajuli
Dust, Aerosols, Climate Modeling, Climate Change, Sustainability, Civil Engineering
Nicholas D PerezNicholas D Perez
My work focuses on understanding the Cenozoic deformation history of the central Andes of southern Peru. I use a mix of basin analysis (sedimentology/stratigraphy, provenance, geochronology) and structural (field mapping, balanced cross sections, thermochronology) techniques. With this work I will address questions regarding the timing and mechanisms responsible for crustal thickening found in the central Andes. I am also interested in how inherited structures influence subsequent shortening and basin development in orogens.
Eric I Petersen
Eric Petersen is a PhD student working on Martian lobate debris aprons (LDAs), strange landforms interpreted as massive debris-covered glacier systems. As remnants of past obliquity-driven glacial cycles on Mars, these features are valuable indicators of Amazonian palaeoclimate. Eric's work involves using SHARAD orbital radar sounding data in conjunction with ice flow modeling and geomorphic analysis to provide constraints on LDA formation and history. He is also interested in geophysical studies of debris-covered glaciers and ...
Anastasia M PiliourasAnastasia M Piliouras
My research focuses on sediment transport and morphodynamics of fluviodeltaic systems using both physical experiments and field studies. I am interested in the environmental feedbacks that shape the landscape at both large and small scales, and I am currently studying how vegetation affects river delta growth and channel dynamics.
Michael T RamirezMichael T Ramirez
Dustin M SchroederDustin M Schroeder
In general, I am interested in the fundamental problem of observing, understanding, and predicting the interaction of ice and water in the earth system. In particular, I am interested in the role that subglacial water systems play in the evolution and stability of continental ice sheets and their potential contribution to the rate of sea level rise. I am also interested in the development, use, and analysis of geophysical radar remote sensing systems that are ...
John B ShawJohn B Shaw
Brittany C Smith
John M Swartz
Eugen P Tudor
Kelsi R UstipakKelsi R Ustipak
Clastic sedimentology, deepwater depositional systems, turbidites, transitional flow deposits, siliciclastic petrology, experimental sedimentology, energy resources, karst hydrogeology
Kristopher Voorhees
Carbonate Sedimentology and Sequence Stratigraphy
Lichun Wang
Fluid flow, solute transport and reactive transport through fractures
John G Warden
Corinne  WongCorinne Wong
University of California Presidential Postdoctoral Fellow (2013-current) Dept. of Earth and Planetary Sciences University of California Davis Assistant Professor (starting Jan 2015) Dept. of Earth and Environmental Science Boston College I use environmental isotopes to investigate processes controlling modern hydrologic systems and reconstruct past climate from speleothems. I am currently working on a model-data comparison of the response of rainfall over the western US to past warm and cool intervals. For additional detail, please visit my ...
Yao  YouYao You
I am interested in studying the coupling of geomechanics and geomorphology.
Geochronology of the Ordovician (Graduate or Undergraduate)
The Ordovician time scale is bracketed by major extinction events, including one that is the 2nd largest in Earth's history. The goal of this project is to date zircon grains collected from bentonite (clay-rich) samples from Ordovician exposures from a range of locations (Canada, US, Scandinavia) to further understand the late Ordovician Hirnantian Ice Age and the big end Ordovician extinction. The project would involve analysis of sedimentary and volcanic rocks, petrology, geochemistry, zircon geochronology, and tectonic interpretations. With Dr. Michael Brookfield (Univ. Mass Boston)
Posted by: Elizabeth Catlos

 
International Research Experiences for Students (IRES): Closing Oceans: Assessing the Dynamics of Turkish suture zones (Graduate or Undergraduate)
I currently have a proposal in review with the National Science Foundation that requests funds to provide 4 weeks of geological field-based research and training experiences across Turkey for undergraduate and graduate students. They will conduct research within a multidisciplinary, regional framework focusing on investigating arc accretion processes that occurred in Turkey during the closure of branches of ancient ocean basins. Because of its Tethyan suture zones and fragments, Turkey is an ideal location to develop models for accretionary orogenesis and how continents grow. Students will partner with Turkish researchers to explore a multidisciplinary range of geological concepts discussed in their courses while making a significant impact on our understanding of processes related to the formation of continental crust. Students will visit field areas across Turkey to develop a regional-scale perspective. All IRES students will undego an intense pre- and post-departure program developed with the assistance of Turkish colleagues and numerous UT Austin resources. If funded, recruitment will begin in Fall 2015. The recruitment plan is geared towards attracting members of underrepresented groups and all IRES student participants will be US citizens or permanent residents, as required by the program solicitation. We target high-achieving graduate students and sophomore level undergraduates or internal transfers majoring in geology because others at higher levels will likely have time constraints on their summers due to degree-required field camp. Consideration will also be made for students attending other geoscience departments in Texas outside the Jackson School. With Drs. Rich Kyle and Brent Elliott (Jackson School); Tolga Oyman (Dokuz Eylul University, Dept. Geological Engineering), Bora Rojay (Middle East Technical University, METU Dept. of Geological Engineering) and Sebnem Duzgun (METU Dept. of Mining Engineering), and Aykut Akgun (Karadeniz Technical University, Dept. Geological Engineering).
Posted by: Elizabeth Catlos

 
Aerogeophysical DataAerogeophysical Data
The Institute for Geophysics shares data from a range of aerogephysical missions flown over Antarctica.

Aerogeophysical SystemsAerogeophysical Systems
UTIG has developed, maintained, and operated a suite of aerogeophysical instrumentation since the early 1990s with continual improvements since inception. The suite was installed aboard a Dehavilland DHC-6 ("Twin Otter") up to 2005 and aboard a Basler BT-67 (a version of DC-3T -- a Douglas DC-3 refitted with turboprop engines) since 2008. The current instruments are: High Capability Radar Sounder (HiCARS); Multibeam, Scanning Photon Counting Lidar; Cesium Vapor Magnetometer; Gravimeter; Dual-frequency, carrier-phase Global Navigation Satellite Systems (GNSS); Laser Altimeter; Two GPS-aided Inertial Measurement Units; Three-Axis Fluxgate Magnetometer; System Control, Data Acquisition, and Real-time QC and Monitoring functions.

Airborne Optech LIDAR SystemAirborne Optech LIDAR System
For fine-scale topographic mapping

Aqueous Geochemistry Lab
Characterizes the chemical properties of water and solids to support research in hydrogeology, geochemistry, and geomicrobiology. Equipment used: carbon analyzer (TC), Organic analysis Field and laboratory gas chromatographs, thermal desorber, high pressure liquid chromatographs, Inorganic analyses Ion chromatograph, autotitrator, field and lab spectrophotometers. BET sorptometer for N2, Ar, and Kr BET surface areas, and A microporosities, organic carbon analyzer.

Core Research Center (Austin)Core Research Center (Austin)
The Austin Core Research Center (CRC), located adjacent to Bureau headquarters, is the Bureau of Economic Geology's main core repository for core and rock material donated to the university. More than 500,000 boxes of core and cuttings from wells drilled throughout Texas, the U.S., and the world are available at this facility for public viewing and research. Austin, Houston, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. The Integrated Core and Log Database (IGOR) is a searchable database for all CRC core and well cutting holdings. Public facilities include core examination layout rooms and processing rooms for slabbing core. Other services are available upon request.

Core Research Center (Houston)Core Research Center (Houston)
The Houston Research Center (HRC), is located on the west side of Houston, Texas, six miles north of I-10 and two miles south of U.S. Highway 290. This state-of-the-art climate-controlled facility is equipped to permanently store and curate over 900,000 boxes of geologic core and cuttings. The Houston, Austin, and Midland core facilities have combined holdings of nearly 2 million boxes of geologic material. In addition to the climate-controlled core and cuttings warehouse, the HRC complex has offices, laboratories, and a well-lit core layout room available for visiting scientists. There are also two conference rooms to accommodate guests attending short courses and seminars. Other services are available upon request. Nominal fees are charged to rent table space and to view core. The HRC has space dedicated for storing samples and cores acquired by NSF-funded research. The HRC curates this material and facilitates continued access to the material by researchers. The Integrated Core and Log Database (IGOR) is a searchable database for all core and well cutting holdings.

Dual-frequency Geodetic Quality GPS ReceiversDual-frequency Geodetic Quality GPS Receivers
We have 5 Trimble Net-RS receivers, tripods, choke ring antennas. One is with Tiffany Caudle at BEG used to support the Optech Lidar system. The other 4 are in JGB 3.122 and used by various groups.

Electron MicroprobeElectron Microprobe
Installed in 2002-2003, the JEOL JXA-8200 electron probe microanalyzer (EPMA) is equipped with five wavelength dispersive spectrometers (WDS), an energy dispersive detector (EDS), and two image detectors in secondary and backscattered electron modes. The primary aim of the microprobe is quantitative elemental analysis of minerals on a microscale with high precision (less than a percent relative for major constituents) and low detection limits (commonly a few tens to few hundreds ppm)

Flash Flood & Tsunami FlumeFlash Flood & Tsunami Flume
The Flash Flood and Tsunami flume is a large (approximately 40 x 1.5 x 0.8 m) outdoor flume with a computer-controlled headbox lift gate that generates reproducible flood bores. It is being used to study the hydraulics and sediment transport of rapidly changing hydrographs.

Gas Chromatography Mass Spectrometry Laboratory
Geophysical Equipment for GlaciologyGeophysical Equipment for Glaciology
We have a custom built, low-frequency, short-pulse, ground-based radar system to image deep (>100 m) internal layers and the base of the ice sheet. Frequencies used with this system include 1, 2, 5 and 10 MHz. We also have a GSSI high-frequency (100MHz) ground-based radar system which can be used in several configurations and with a range of antennae frequencies. In addition, we have 7 GNSS GPS units for high-precision positioning, as well as multiple data loggers and time-lapse cameras for use in glaciological settings.

Grain-sizing Sedimentology Lab
This laboratory contains Ro-tap seiving apparatus, a Micromeritics 5100 clay and silt size x-ray analyzer, and an automated settling column for sizing sand fraction.

HPLC Mass Spectromtery Laboratory
Hydro Lab
This lab is dedicated to hydrogeology and environmental geology courses. It has facilities for grain-size analyses, porosity/ permeability testing, and a wide variety of lab demonstration techniques. It is also used as the base for groundwater field methods courses.

Hydrogeophysical EquipmentHydrogeophysical Equipment
These tools include: 1) Electrical Resistivity Meter. The AGI SuperSting R8 IP is an 8-channel resistivity and induced polarization imaging system specially designed for large surveys where speed of data acquisition is of essence. Can be used for land applications with 6 m spacing, underwater applications with 2 m spacing, or boat-towed surveys with 1 to 5 m spacing. 2) Infrared Camera. The FLIR ThermaCAM SC640 is a high-resolution thermal infrared camera. The portable handheld radiometer (7.5 to 13 micron wavelength) takes images at 640x480 pixels at rates of down to 16 Hz. The precision of the camera is 0.08 C.

Ice Dynamics ModelIce Dynamics Model
A 4' x 6' bench-top physical model simulating water flow under ice sheets and glaciers. Ice is represented by a transparent polymer. Water is injected below the "ice" at varying rates to observe the effects of discharge pulses on the channel geometry and surface motion of the "ice." Changes in discharge are designed to mimic a typical diurnal discharge pattern observed on alpine glaciers.

Isoprobe ICP Mass Spectrometer
The IsoProbe MC-ICP-MS is a multicollector, magnetic-sector inductively coupled plasma mass spectrometer featuring a hexapole collision cell immediately behind the interface region of the ICP, and the multicollector contains nine Faraday collectors, three channeltron ion-counting detectors for low-level signals (ion currents below 10-16 amp), and an axial Daly detector located behind a wide aperature retarding potential filter for high abundance sensitivity on the Daly detector. The IsoProbe mass spectrometer is capable of making isotope ratio measurements in a large number of systems, including Ca, Fe, Cu, Se, Rb-Sr, Sm-Nd, Lu-Hf, Re, common Pb, Th-U series isotopes, and in situ laser ablation measurements of Sr, common Pb, Lu-Hf, and U-Pb.

Isotope Clean Lab (Banner)
The Isotope Clean Lab is a 600 square foot clean chemistry lab with seven Class-100 workspaces for preparation of rock, mineral, soil, plant and water samples for chemical and isotopic analysis under low-contamination conditions.

Narrow Temperature-controlled Open Channel FlumeNarrow Temperature-controlled Open Channel Flume
Custom built 5-m tilting flume. Width: 30 cm. Depth: 1 meter. Other features: 3 removable windows with septa ports, fluids can be extracted or injected from the floor.

Paleoclimatology and Environmental Geochemistry Laboratory
Major instrumentation includes: (1) Gas chromatograph-single quadrupole mass spectrometer (GC-IRMS) for quantification and identification of organic compounds, and (2) HPLC-signgle quadrupole mass spectrometer (HPLC-MS) equipped with intelligent fraction collection for identification, quantification and isolation of high molecular weight compounds.

Paleolimnology Laboratory
Revolving Environmental Lab
The REL includes a geoprobe for drilling, an Ion Chromatograph for analyzing anions and cations, and a stratified aquifer sampler for analyzing varying groundwater flow and quality with depth.

Stable Isotope Lab for Critical Zone Gases
This lab is designed for the study of caves, soils and vegetative canopies. The GasBench II and Thermo Electron 253 in the High Temp. Stable Isotope lab are currently being used to measure the carbon isotope composition of soil and cave CO2, CO2 respired in soil respiration experiments, and dissolved inorganic carbon and calcium carbonates from multiple environments.

Superconducting Gravimeter LabSuperconducting Gravimeter Lab
A GWR superconducting gravimeter (precision ~0.01 micrGals) configured to be transportable, used in hydrologic and other studies. This is usually deployed in the field for campaigns of months and longer.

UT Experimental Deep Water BasinUT Experimental Deep Water Basin
The UTDW Basin is an experimental tank designed to physically model morphodynamic and stratigraphic evolution of continental margins and other subaqueous sediment transport systems. It is 4 m wide, 8 m long, and 2 m deep. The tank has 5 observation windows, underwater lighting and an array of synced overhead cameras. The facility is designed to map underwater deposit surfaces in space through time and measure fluid dynamic and sediment transport properties of formative density flows.

UT Sediment Transport and Earth-surface Processes (STEP) BasinUT Sediment Transport and Earth-surface Processes (STEP) Basin
The STEP Basin is an experimental flume designed to physically model morphodynamic and stratigraphic evolution of the fluviodeltaic system. It is 4 m wide, 5 m long, and 1.5 m tall. This facility is one of only three in the world with a computer-controlled basement motion, which can mimic 1) fore-hinge (passive margin), 2) back-hinge (foreland basin), and 3) lateral tilting subsidence patterns.

Walter Geology LibraryWalter Geology Library
The primary research collections of the library presently include more than 100,000 book and journal volumes and 46,000 geologic maps, among them the publications of the U.S. Geological Survey, most state geological surveys, and those of many foreign countries. Regional emphasis of the collection is on the Southwestern United States, Texas, and Mexico. The Institute and Bureau also have extensive libraries related to their specific research areas.

Wind Tunnel/Flume Lab
The Department of Geological Sciences maintains two wind tunnels for experiments in aeolian transport. One tunnel (0.5 m2 X 10 m) features a long transport section that ends in a slipface. The second tunnel features a rotating table (1 m in diameter) that can be used to simulate any range of wind directions.

Center for Integrated Earth System Science
The Center for Integrated Earth System Science (CIESS) is a cooperative effort between the Jackson School of Geosciences and the Cockrell School of Engineering. The center fosters collaborative study of Earth as a coupled system with focus on land, atmosphere, water, environment, and society.
Center for Sustainable Water Resources
The Center for Sustainable Water Resources conducts studies related to water quantity and quality aspects of water resources at local scales using field studies and regional scales using remote sensing and at annual to millennial timescales. Impacts of land use change and climate variability/change are important drivers considered in these studies. The results of these studies will have important implications for development of sustainable water resource programs in different regions.
Land, Environment & Atmospheric Dynamics
The LEAD group consists of graduate research assistants, postdoctoral fellows, research scientists and visiting scholars. We view the earth system in a holistic way, linking the atmosphere, ocean, biosphere, cryosphere, and solid earth as an integrated system. We use powerful methodologies such as satellite remote sensing and supercomputing simulations which are now profoundly changing research in earth system sciences. We place a strong emphasis on the societal impact of the research in earth system sciences.

Affiliated UT Programs & Centers


Center for Space Research
The University of Texas at Austin, Center for Space Research was established in 1981 under the direction of Dr. Byron D. Tapley. The mission of the Center is to conduct research in orbit determination, space geodesy, the Earth and its environment, exploration of the solar system, as well as expanding the scientific applications of space systems data.

Research Groups


Dynamic Stratigraphy Workgroup
ENCOMPASS: Research for Earth-Society Systems
Morphodynamics and Quantitative Stratigraphy
Field Team 2012 summer field season. From left to right: Dolores van der Kolk, Andrea Miller, Peter Flaig, Doug Hissom, Steve Hasiotis. Posted by Peter P Flaig

Photo set includes images of fieldwork done on the North Slope of Alaska from 2005-2013

Field Team 2012 summer field season. From left to right: Dolores van der Kolk, Andrea Miller, Peter Flaig, Doug Hissom, Steve Hasiotis. Preparing to boat to work, summer 2012.Small aircraft put in, Shivugak Bluffs Alaska 2012.Cretaceous meandering channels and floodplain facies of the Prince Creek Formation, North Slope - Alaska.Cook tent and fall tundra colors, Colville River, North Slope - Alaska.Alaskan dinosaur Pachyrhinosaurus Perotorum skulls and bones loaded into a Cessna Caravan and ready for shipment to the Perot Museum of Nature and Science, Dallas - Texas.Pachyrhinosaurus Perotorum skull from the previous photo prepared and on display at the  Perot Museum of Nature and Science, Dallas - Texas.It's a rough job, but someone has to do it :) Boating the Colville River during fieldwork in 2006.The Cretaceous coastal plain of Arctic Alaska, Colville River, North Slope - AlaskaBoating the Colville River in a sandstorm.

 

Beardmore Base Camp 2010-2011 (CTAM) - Central Transantarctic Mountains, Antarctica Posted by Peter P Flaig

Photos of fieldwork in the Central Transantarctic Mountains during the 2003-2004 and 2010-2011 field seasons.

Beardmore Base Camp 2010-2011 (CTAM) - Central Transantarctic Mountains, AntarcticaC-130 Hercules takeoff from camp at Moody Glacier, Central Transantarctic Mountains, AntarcticaHelicopter support, Beardmore Base Camp 2003-2004 (CTAM) - Central Transantarctic Mountains, AntarcticaMount Bowers field site on the Beardmore Glacier, Central Transantarctic Mountains, AntarcticaChecking in with Beardmore Base Camp, Mount Bowers, Central Transantarctic Mountains, AntarcticaA visit from an Emperor Penguin during gear shakedown, Ross Island, Central Transantarctic Mountains, Antarctica C-130 Hercules Jet Assisted Take-Off (JATO), Beardmore Base Camp, Central Transantarctic Mountains, AntarcticaField food - Beardmore Base Camp, Central Transantarctic Mountains, AntarcticaTriassic mammal-like reptile burrow, Fremouw Formation at Graphite Peak, Central Transantarctic Mountains, Antarctica Closeup of terminal chamber of mammal-like reptile burrow, Fremouw Formation at Graphite Peak, Central Transantarctic Mountains, Antarctica

 

Stratigraphy in the Rangley area of Colorado including the Castlegate, Buck Tongue of the Mancos Shale, Loyd, and Sego. Posted by Peter P Flaig

Photos of fieldwork on clastic wedges of the Cretaceous Western Interior Seaway in Utah, Colorado, and Wyoming

Stratigraphy in the Rangley area of Colorado including the Castlegate, Buck Tongue of the Mancos Shale, Loyd, and Sego.Textbook Ophiomorpha in the Loyd, Rangley, Colorado.Incised valley in the Sego, Rangley, Colorado.Potential tidal inlet in the Loyd, Rangley, ColoradoHummocky cross stratified sandstones of the Kennelworth, book cliffs UtahTidally influenced facies of the Sego, Book Cliffs Utah