Ocean crustal studies integrate geophysical, geochemical, and geological approaches and use a range of shorebased and seagoing operations to elucidate the processes governing two-thirds of our planet's surface.

Faculty & Research Scientists

Jaime D BarnesJaime D Barnes
Stable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes
Gail L ChristesonGail L Christeson
Marine seismology, mid-ocean ridge structure and emplacement processes, oceanic crustal structure, ocean-bottom seismology, seismic refraction
John C LassiterJohn C Lassiter
Earth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/mantle boundary
Luc L LavierLuc L Lavier
Tectonics; the structural and geodynamical evolution of continental and oceanic rifts, as well as collisional environments; numerical techniques to model tectonic processes on crustal and lithospheric scales; deformation; subduction
Kirk D McIntoshKirk D McIntosh
Structure and development of continental margins along convergent and transpressive plate boundaries; sediment accretion, subduction, and erosion at convergent margins; forearc and backarc extension and compression; fluid dynamics in accretionary prisms; shallow-subduction seismicity
Sharon  MosherSharon Mosher
Structural petrology, field-oriented structural geology, the evolution of complexly deformed terranes, strain analysis, deformation mechanisms, the interaction between chemical and physical processes during deformation
Paul L StoffaPaul L Stoffa
Multichannel seismic acquisition, signal processing, acoustic and elastic wave propagation, modeling and inversion of geophysical data
Harm J Van AvendonkHarm J Van Avendonk
Van Avendonk is an active-source seismologist who specializes in the acquisition and inversion of seismic refraction data on land and at sea. Often these seismic refraction data are used for a tomographic inversion. The resultant seismic velocity models help us to interpret the composition of the Earth’s crust and mantle, the geometry of sedimentary basins, and the structure of plate boundaries.
Donggao  ZhaoDonggao Zhao
Electron microbeam and X-ray techniques, mantle mineralogy and petrology, environmental mineralogy, nuclear waste management, and materials science.

Research Staff