The Jackson School has student opportunities for research among our different themes and disciplines. Learn more about the current graduate and undergraduate student research opportunities.


Research in Marine Geology and Geophysics (Graduate)
There are opportunities for research within Marine Geology and Geophysics.
Posted by: Sean Gulick
Graduate Student Position in Mineral Physics Lab (Graduate)
The mineral physics lab at the Department of Geological Sciences, Jackson School of Geosciences, the University of Texas at Austin invites applications for graduate student positions towards a Master's or Ph.D. degree in mineral physics. The Jackson School of Geosciences has exceptionally well-funded research programs and offers a number of scholarships to support graduate students for an extended period of time. Candidates with strong background and/or interest in physics (solid state physics), math, and geophysics/geochemistry are strongly encouraged to apply. Our mineral physics research programs focuses on high pressure-temperature experimental studies on materials properties using synchrotron X-ray and optical spectroscopies in a diamond anvil cell. Information about the graduate student programs at the Jackson School is available at: http://www.jsg.utexas.edu/.
Please contact Dr. Jung-Fu Lin at afu@jsg.utexas.edu for further information.
Posted by: Jung-Fu Lin
Graduate and undergraduate research in geologic sequestration of CO2 (Graduate or Undergraduate)
Gulf Coast Carbon Center supports a team of students and post docs working in geologic sequestration (deep subsurface long-duration storage) of the major greenhouse gas CO2, as a method to reduce release to the atmosphere. Student projects are wide ranging, from sedimentology to policy, linked in that they are 1) multidisciplinary and 2) applied to current issues.
Students are typically jointly supervised by faculty in geology or petroleum geosystems engineering and staff at the GCCC. A class in geologic sequestration is offered in the fall some years.
Posted by: Susan Hovorka
Fault and fracture processes, structural diagenesis (Graduate)
Graduate student projects combine the fields of fault and fracture mechanics and low-temperature geochemistry addressing deformation mechanisms of the upper crust, structural control of mass and heat transfer in sedimentary basins, the effects of chemical mass transfer on the mechanical and hydraulic behavior of fractures and faults, and the chemical interaction between fluids and minerals. Projects usually require the integration of field and laboratory analytical or numerical work and preference goes to applicants that are equally comfortable in the field and in the lab. Research topics include field- and core-based structural geology, geomechanics, geofluids, geochemistry, and natural resources including CO2 sequestration. A current research emphasis lies in Structural Diagenesis which combines the traditionally separate fields of brittle structural geology and diagenesis/geochemistry. Preference goes to PhD applicants with a prior MS degree and MS applicants with undergraduate research experience, preferentially through completion of a senior's thesis. Applications should be submitted to the MS or PhD program in Geological Sciences (GEO). Please contact Peter Eichhubl (peter.eichhubl@beg.utexas.edu for further details.
Posted by: Peter Eichhubl
Innovative Detrital Provenance Studies - Double Dating PLUS (Graduate)
A major thrust of my current research the development and application of more comprehensive isotopic detrital provenance tools. U-Pb on zircon is clearly the big work horse, but only goes so far and sometimes yields "no" useful info, e.g., if the source of the sediment is mostly recycled sediment. We have extensively pursued double dating of zircons by U-Pb and He, as zircon He ages yield very interesting insights into the thermal and tectonic history of the source terrane; often yielding very different insights than crystallization ages. The combination is powerful, but I think we can take things so much farther by combining double dating with other constrains. People have tried fission track (not precise enough), Hf/Hf (to get mantle separation model ages), etc., but what we want to do and are working on is really Double Dating ++, combining zircon U-Pb-He dating with a variety of other geochemical aspects to more comprehensive understand detrital provenance and improve paleo-tectonic reconstructions. For example, trace-element thermometry (Ti in zirc), REE on zircon (met vs mag origin), Hf/Hf (see above), oxygen isotopes, etc. and also to develop rutile in an analogous manner (e.g., Zr in rut thermometry, Cr/Nb ratio (mafic vs granulitic), REE, etc.). The sky is the limit and what can learn so much. The issue in part it, how much can a single grain tell us before it's gone? The project sounds very laboratory oriented, but it's really a combination of field and lab work. We have identified a few possible case study areas, e.g., Morocco; great exposures, long-lived and preserved record of basin deposition since the Precambrian. My group is already working on some case studies in NW Himalayas, the N & S Pyrenees, the Sevier FTB, Permian Basin and other foreland basin. New projects include provenance studies along rifted and passive continental margins such the Gulf of Mexico, the central Atlantic Margins in Canada, USA, Portugal, and Morocco.
Posted by: Daniel Stockli
Exhumation of the Central Alps, Switzerland (Graduate)
Being Swiss, I have had a long-standing interest in the Alps and over the past few yearsI have had two students working on the exhumation of the eastern Alps (Engadin) and the Molasse foreland basin. Over the past decade different models have explored the role of climate (incl. Messinian salinity crisis) vs tectonics (out-of-sequence thrusting etc.). The exhumation of the northern Alpine external massives (esp. central Aar Massif) in Switzerland is key in solving this problem. We have a detailed study in the western Aar Massif and it has really questioned a lot of the thinking in terms of the late-stage structural and tectonic reconstruction of the Alps and the evolution of the Alpine critical taper. This is also a project a lot of people would be very interested in in terms of the results. I have collected some samples, but a lot more work needs to be done in the field and the laboratory. Some of the sampling might require good fitness etc. or more. In addition to surface sampling, there are also a lot of tunnels and the potential of 3D modeling to really understand and solve this problem.
Posted by: Daniel Stockli
Undergraduate and Graduate Opportunities (Graduate or Undergraduate)
I regularly work with from 2-5 undergraduates and am open to co-advised honors theses and other. I feel undergraduate research is one of the most important aspects of undergraduate education.

I will be accepting several graduate students over the next two years (I average from 2-5 total).

I am particularly interested in PhD students with prior experience in systematic methods, an interest in phylogenetic or anatomical (evolution of morphology) questions concerning the evolution of birds.

I am also interested in highly motivated MS candidates with an interest in studying avian evolution. Although I have advised theses on non-avialan dinosaurs in past years, given current funded research projects, I am presently interested in advising students interested in working on birds (origin and evolution of).

Please feel free to contact me via email with any questions.
Posted by: Julia Clarke
Research in structural diagenesis (Graduate or Undergraduate)
Fundamental and applied research on fractures, particularly as these studies apply to petroleum reservoirs, is conducted under the auspices of the Fracture Research and Application Consortium at The University of Texas at Austin. The academic program of research, mentoring and teaching is led by staff of the Bureau of Economic Geology, the Department of Petroleum & Geosystems Engineering and the Department of Geological Sciences. Students in the Energy & Earth Resources Graduate Program also participate in FRAC sponsored research projects.

For further information on opportunities for fracture studies within the program see the FRAC pages on opportunities in Geology, Petroleum Engineering, Geophysics, and Energy Economics.

FRAC welcomes Visiting Scientists from industry and from other academic institutions. Contact Steve Laubach for more information about these opportunities.

A key part of the FRAC academic program is the Structural Diagenesis Initiative, a new teaching and mentoring perspective on interacting mechanical and chemical processes at high crustal levels in the Earth. For more information on the initiative see the Structural Diagenesis Initiative web site.

If you are a prospective student, please see the admissions information on the Petroleum & Geosystems Engineering or Jackson School of Geosciences web sites.
Posted by: Stephen Laubach
General Opportunities in Field and Laboratory Based Studies (Graduate or Undergraduate)
My position does not permit sole supervision of graduate student theses, but I co-supervise or serve on graduate student theses committees, particularly those involving aspects of GIS, GPS, structural geology, tectonics and petrology/mineralogy. I have supervised several undergraduate student honors thesis, both lab- and field-based, and look forward to continuing to do so.
Posted by: Mark Helper
Sorry, no spots available... (Graduate or Undergraduate)
Having retired from my faculty position in 2014, I am no longer taking on new students.
Posted by: William Carlson
Graduate research opportunities in computational seismology (Graduate)
Texas Consortium for Computational Seismology is looking for Ph.D. students interested in computational research. Our group works on a broad range of topics in exploration geophysics, from wave-equation seismic imaging and inversion to computational algorithms for seismic data processing and seismic interpretation. The work is supported by industrial sponsors. We use open-source software tools and high-performace computing resources.
Posted by: Sergey Fomel
Graduate and Post-Doctoral opportunities in GeoFluids Research Group (Graduate)
The GeoFluids Research Group has immediate opportunities for graduate and post-doctoral study. Dr. Flemings is most enthused by students who have a commitment to a doctoral program because that allows time to delve deeply into research. However, he also regularly accepts exceptional M.S. students into our research group. If you are interested, please e-mail, Peter Flemings (pflemings@jsg.utexas.edu).

Current Research Opportunities:

1. Hydrate Melting:
Examine the melting of methane hydrates in Arctic systems. DOE funded effort will examine the impact of warming over human time scales and longer. The project description is found here. We are looking for students and post-doctoral scientists with a fascination for marine geology and a yen for quantitative analysis of fluid flow.

2. Mass Transport in Shales:
Study transport processes in shale systems! You will perform permeability testing of shales (e.g. the Barnett, the Marcellus…) and develop multi-scale numerical models to describe mass transport within these systems. The work will include both laboratory analysis and sample characterization. This project is supported by Shell.

3. GeoPressure Analysis:
Study geopressure in sedimentary basins through our industry funded consortium UTGeoFluids. Dr. Flemings is always looking for students with a yen to characterize and model overpressure in sedimentary basins.

4. Mudrock Geomechanics:
Study the geomechanics of mudrocks through experimental analysis. This research is supported by UTGeoFluids. In this research, we analyze both intact samples (from industry and the ocean drilling program) and we synthetically create mudrocks. We ask fundamental questions such as:
How to mudrocks compact?
What is the permeability of mudrocks and how does it evolve?
What is the strength of mudrocks?
Posted by: Peter Flemings
PhD Student Opportunity in Climate Research (Graduate)
A PhD student is recruited to conduct modeling and observational study of Pacific decadal variability and its relation to decadal modulations of El Nino-Southern Oscillation at the University of Texas at Austin. Background in oceanic and atmospheric sciences is preferred but not required. General information on the graduate program at the UT's Jackson School of Geosciences can be found at http://www.jsg.utexas.edu/. The deadline for Fall 2014 application is January 1st, 2014. Interested candidate should contact Yuko M. Okumura (yukoo@ig.utexas.edu) for more information.
Posted by: Yuko Okumura
Postdoctoral Fellowship Position (Graduate - July 2014-July 2016)
The Bureau of Economic Geology in the Jackson School of Geosciences at The University of Texas at Austin currently has long-term, funded projects on the environmental implications of CO2 sequestration. We are currently recruiting new or recent Ph.D. scientists or engineers for a postdoctoral fellowship position.

Position: Numerical and Analytical Modeling of Fluid Flow in Porous Media and Associated Geomechanical Effects of CO2 Sequestration

We are interested in outstanding fellowship applicants with direct experience in one or more of the following topics: effects of poro-elastic stresses created by CO2 plumes, and near wellbore thermo-elastic analyses of rocks, detecting CO2 leaks by interrogating pressure data in monitoring zones, and/or detecting plume extension by pressure analysis in the injection zone. We anticipate that the successful candidate will have formal training in petroleum engineering, hydrogeology, civil engineering or related fields. Candidates with interest in theoretical analyses and mathematical modeling of coupled fluid flow/geomechanics problems are of particular interest.

These potential projects are managed by the Gulf Coast Carbon Center (GCCC), an interdisciplinary team of research geologists and engineers who conduct CO2-sequestration research at the Bureau of Economic Geology. GCCC is one of the world’s leading research groups in CO2 sequestration. Our Frio brine injection experiment was the first to monitor CO2 injection into brine, and our current Cranfield injection project builds on that earlier research, monitoring an injection of more than 1 million tons CO2/year into a brine reservoir. Several other field-scale monitoring projects are currently being studied by GCCC scientists and engineers. GCCC collaborates closely with faculty in departments across the UT-Austin campus, other universities, and U.S. Department of Energy national laboratories.

This position will be based in North Austin, at the J.J. Pickle Research Campus, The University of Texas at Austin. Austin is often on the list of top 10 or top 5 places to live in the U.S.

Please send a resume and an expression of interest to:

Dr. Seyyed Abolfazl Hosseini
Email at: seyyed.hosseini@beg.utexas.edu

The University of Texas at Austin is an equal employment opportunity/affirmative action employer. All positions are security sensitive, and conviction verification is conducted on applicants selected.
Posted by: Seyyed Hosseini
MSc or PhD Student (Graduate)
I am actively seeking graduate students to join my lab who are interested in paleoecology, marine communities, carbonate sedimentology, and/or geobiology.
Posted by: Rowan Martindale
Geochronology of the Ordovician (Graduate or Undergraduate)
The Ordovician time scale is bracketed by major extinction events, including one that is the 2nd largest in Earth's history. The goal of this project is to date zircon grains collected from bentonite (clay-rich) samples from Ordovician exposures from a range of locations (Canada, US, Scandinavia) to further understand the late Ordovician Hirnantian Ice Age and the big end Ordovician extinction. The project would involve analysis of sedimentary and volcanic rocks, petrology, geochemistry, zircon geochronology, and tectonic interpretations. With Dr. Michael Brookfield (Univ. Mass Boston)
Posted by: Elizabeth Catlos
Nature, age, and emplacement of ophiolite complexes in NW India (Graduate or Undergraduate)
During the mid-Mesozoic to Eocene, the Indian subcontinent moved over 60 degrees latitude north towards Asia, closing the ancient Neo-Tethyan Ocean. This ocean plays a central role in reconstructing a number of orogenic systems extending from Europe to Asia, but debated issues remain because exposures of the former ocean and its sub-basins are affected by plate collision, arc and terrane accretion, and later deformation. The goal of this project is to date and geochemical analyze an isolated basic-ultrabasic massif that overlies shelf limestones of the northern Indian passive margin in NW India. The ophiolite body currently has no comprehensive published geochemical studies which would allow comparison with other complexes across the Himalayan range and its ages have large errors. The project involves geochronology of metamorphosed mafic igneous rocks, petrology, and tectonic interpretations. With Profs. M. Brookfield (Univ. Mass Boston) and G.M. Bhatt (Univ. Jammu).
Posted by: Elizabeth Catlos
Granitic rocks from the Biga Peninsula of western Turkey (Graduate or Undergraduate)
This project involves a field, geochemical and geochronological study of a number of granite plutons located in the Biga Peninsula of western Turkey. The objective is to decipher their tectonomagmatic histories to understand large-scale dynamics of extension in the back-arc of the northern Aegean. Back-arc basins are major components of numerous subduction zones around the world and deciphering the processes occurring in the Aegean back-arc region allows us to evaluate the role of the subducting slab, a prior tectonic history, strike-slip dynamics, and magma migration in the development of these key plate tectonic features. The Aegean is atypical of back-arc basins in general, and a number of processes complicate its geology, including the closure of branches of Tethyan oceans and strike-slip deformation. How the geology of the Biga Peninsula links to that of Greece and Bulgaria is also debated. Data generated in this project will be used to evaluate models for Aegean extension and to understand how the geology of the Biga Peninsula relates to that elsewhere in the region. Elements that are fundamental to models for Aegean extension are located in the field area, including Tethyan sutures, extensional structures, and active strands of the North Anatolian Shear Zone. With Dr. Tolga Oyman (Dokuz Eylul University)
Posted by: Elizabeth Catlos
International Research Experiences for Students (IRES): Closing Oceans: Assessing the Dynamics of Turkish suture zones (Graduate or Undergraduate)
I currently have a proposal in review with the National Science Foundation that requests funds to provide 4 weeks of geological field-based research and training experiences across Turkey for undergraduate and graduate students. They will conduct research within a multidisciplinary, regional framework focusing on investigating arc accretion processes that occurred in Turkey during the closure of branches of ancient ocean basins. Because of its Tethyan suture zones and fragments, Turkey is an ideal location to develop models for accretionary orogenesis and how continents grow. Students will partner with Turkish researchers to explore a multidisciplinary range of geological concepts discussed in their courses while making a significant impact on our understanding of processes related to the formation of continental crust. Students will visit field areas across Turkey to develop a regional-scale perspective. All IRES students will undego an intense pre- and post-departure program developed with the assistance of Turkish colleagues and numerous UT Austin resources. If funded, recruitment will begin in Fall 2015. The recruitment plan is geared towards attracting members of underrepresented groups and all IRES student participants will be US citizens or permanent residents, as required by the program solicitation. We target high-achieving graduate students and sophomore level undergraduates or internal transfers majoring in geology because others at higher levels will likely have time constraints on their summers due to degree-required field camp. Consideration will also be made for students attending other geoscience departments in Texas outside the Jackson School. With Drs. Rich Kyle and Brent Elliott (Jackson School); Tolga Oyman (Dokuz Eylul University, Dept. Geological Engineering), Bora Rojay (Middle East Technical University, METU Dept. of Geological Engineering) and Sebnem Duzgun (METU Dept. of Mining Engineering), and Aykut Akgun (Karadeniz Technical University, Dept. Geological Engineering).
Posted by: Elizabeth Catlos
High Resolution 3D marine seismic for fluid studies (Graduate)
Opportunities exist to become involved in the design, acquisition, processing, and interpretation of high-resolution 3D marine seismic data. Current applications include characterization for subsurface storage of carbon dioxide and natural fluid migration studies. We anticipate development into imaging modern systems as reservoir analogs.
Posted by: Timothy Meckel
Postdoctoral Fellow (Graduate - ongoing)
Purpose of position: To conduct research in numerical simulation of fluid flow using both traditional Darcy flow simulators as well as Invasion Percolation methods, sandbox flow modeling, and development of a strong publication record on the topic.

Essential functions: Develop numerical simulations of fluid flow CO2 in mm to m scale models informed by geologic depositional heterogeneity. Assist in designing and implementing laboratory validation experiments of sandbox flow modeling to support theoretical and numerical simulations. Publish results in peer reviewed outlets, assist in project reporting and make presentations, as needed to support project.


Required qualifications: PhD in hydrogeology, environmental engineering, or closely related geoscience field earned within the last three years. Relevant laboratory experience with sandbox scale flow experiments. Demonstrated research interest in forward and inverse modeling of subsurface flow and transport pertaining multi-phase flow.


Preferred qualifications Demonstrated strong oral and written communication skills. Demonstrated ability to conduct experimental studies. Demonstrated experience in presenting and publishing results, including CO2 or CCS.
Posted by: Timothy Meckel
Ph.D. Students Opportunities (Graduate)
My group occasionally has openings for graduate students. Solid quantitative backgrounds with computing experience (e.g. Matlab or NCL or IDL, Linux) and climate dynamics courses are required. Qualified applicants with interests in climate are encouraged to contact me to discuss possibilities.
Posted by: Rong Fu
Undergratuate Students (Undergraduate)
Undergratuate students who are interested in climate change are always welcome to apply.
Posted by: Rong Fu
Postdoc Opportunities (Graduate)
Postdoc positions open for drought and go-Amazon projects. Contact me to discuss opportunities.
Posted by: Rong Fu