Petrology/Mineral Physics
The petrology and mineral physics group at the Jackson School explores mantle geochemistry; volcanic eruption dynamics; metamorphic textures and reactions; lithospheric dynamics; fluid migration in the crust and mantle; and formation of ore deposits. Graduate students at the Jackson School can explore a wide range of processes from theoretical, experimental, and applied perspectives, and greatly benefit from the diverse studies in the group and one of the best equipped research groups in the country.
Jaime Barnes’ research focuses on using stable isotopes as geochemical tracers of fluids in various tectonic settings, to decipher fluid-rock interactions and metasomatism at high temperature (including serpentinization processes), relationships between metamorphic processes and deformation, and volatile transport in subduction zones to aid in quantifying geochemical cycles.
Bill Carlson’s research focuses on developing a quantitative understanding of the rates and mechanisms of metamorphic processes, such as quantitatively analyzing primary metamorphic microstructures, linked to numerical simulations of their development, to understand fundamental processes of recrystallization. The greatest novelty in this work is the use of high-resolution X-ray computed tomography (HR X-ray CT) to reveal the sizes, shapes and disposition of crystals within a rock.
Elizabeth Catlos’ research focuses on applying geochemical techniques to the study of lithosphere dynamics in order to understand the broader tectonic history of regions in Turkey, the Himalayas (India and Nepal), and south India (Tamil Nadu). Her interests include the geochemistry of igneous and metamorphic rocks, geochronology of a variety of minerals, applying mineral equilibria to estimate environmental conditions, and novel petrographic imaging techniques.
Jim Gardner’s research focuses on the physical and chemical aspects of volcanic eruptions and magmatic processes through field studies of active volcanic centers, as well as using experimental petrology to study pre-eruption contents of volatiles in magmas and the degassing of those volatiles during eruption.
John Lassiter’s and Jung-Fu “Afu” Lin’s research focuses on the geochemistry and mineral physics of deep-Earth materials to understand how melts are generated in the mantle, how subduction of crust and sediments has affected the long-term chemical and physical evolution of the Earth’s interior, and how properties of earth materials are affected by extreme pressures and temperatures. Geochemical research includes projects examining the nature and origin of mantle plumes and the global cycling of volatiles in the Earth. Research on mineral physics emphasizes an understanding of the interiors of the Earth and other planets through direct examination of the properties of materials under high pressure-temperature conditions.
Rich Ketcham’s research focuses on theory, calibration, and inversion approaches for extracting thermal history information from various isotopic systems, primarily fission-track and (U-Th)/He. He is setting up a cutting-edge fission-track laboratory. Rich also focuses on high-resolution X-ray computed tomography, including developing techniques in data acquisition, optimization, and processing to extract information for studies in petrology, economic geology, paleontology, hydrogeology, and meteoritics.
Rich Kyle’s research on hydrothermal systems integrates mineralization into a broad framework involving fluid and isotope geochemistry, petrology, tectonics, and geochronology. Long-term studies include pluton- and wallrock-hosted Cu-Au mineralization. Exciting new perspectives are coming from quantitative X-ray computed tomography study of three-dimensional distribution of gold in ores.
Faculty
Jaime D BarnesStable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes | |
Kenneth S BefusVolcanology, igneous petrology, mineralogy, gemology | |
Elizabeth J CatlosPlease see https://catloslab.org/ | |
James E GardnerVolcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies | |
Richard A KetchamHigh-resolution X-ray computed tomography, CT scanning, 3D image analysis, fission-track dating, thermochronology, thermal history inversion, structural geology, tectonics, digital morphology, trabecular bone | |
John C LassiterEarth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/... | |
Jung-Fu LinMineral physics, physics and chemistry of planetary materials, solid-Earth geophysics and geochemistry, high-pressure diamond anvil cell, X-ray and laser spectroscopy | |
Chenguang SunDeep volatile cycling; magmatic and metamorphic processes; planetary differentiation and habitability | |
Nicola TisatoExperimental rock physics and rock mechanics. Digital Rock Physics. Speleology. Seismic wave attenuation, Physical properties of rocks, Wave-Induced-Phenomena, Genesis of caves and speleothems, Reservoir characterization, Nuclear waste management. |
Emeriti
Mark A HelperDr. Helper is a field geologist, a generalist whose interests span igneous and metamorphic petrology, structural geology, tectonics, mineralogy and planetary field geology. His current research explores geochemical and isotopic similarities of Proterozoic and Archean crust in East Antarctica and the southwestern U.S., the Precambrian geology of Texas, and ... | |
J. Richard KyleOre deposits geology, mineral resources and society, geology and supply chains of critical materials, minerals exploration and evaluation, industrial mineral resources, origin of ore-forming fluids in sedimentary environments, fluid inclusions, stable isotopes, salt dome cap rock formation, surficial processes and earth resource formation, high resolution X-ray computed tomography applications to ... | |
Douglas SmithResearch on mantle evolution using tools of mineralogy, petrology, and geochemistry. |
Research Scientists
Alejandro CardonaA well-rounded energy transition requires fundamental and applied research that addresses geomechanical and petrophysical behavior of geological porous materials. My current research has explored rocks and sediments (i) under extreme conditions (high pressure and stresses), (ii) saturated and interacting with complex fluids (hydrates), and (iii) subjected to localizations of all ... |
Research Staff
Raymond L EastwoodPetrophysics; mainly creation of core-calibrated interpretation models for well logs. | |
Sara Elliott | |
Romy D Hannacarbonaceous chondrites, planetary geology, remote sensing, VISNIR and TIR spectroscopy, X-ray computed tomography (CT), electron backscatter diffraction (EBSD), 3D image analysis and processing, scientific software development | |
Robert M ReedMicrostructural analysis of rocks, particularly small-scale deformation structures and pores in mudrocks. |
Graduate Students
Max EhrenfelsThe aim of my research is to improve established methods and develop new methods to extract thermal history information using the (U-Th)/He decay system in zircon. An initial project will produce new mineral standards to overcome analytical shortcomings in the currently used laser ablation (U-Th)/He protocol. This will ... | |
Joshua MunroUnderstanding the effects of subduction on the O-H-Mg-Ca-Zn isotope composition of the downgoing slab, focusing on the Farallon Plate, North America | |
Sarah L O'Leary |
Graduate Student Position in Mineral Physics LabGraduateThe mineral physics lab at the Department of Geological Sciences, Jackson School of Geosciences, the University of Texas at Austin invites applications for graduate student positions towards a Master's or Ph.D. degree in mineral physics. The Jackson School of Geosciences has exceptionally well-funded research programs and offers a number of scholarships to support graduate students for an extended period of time. Candidates with strong background and/or interest in physics (solid state physics), math, and geophysics/geochemistry are strongly encouraged to apply. Our mineral physics research programs focuses on high pressure-temperature experimental studies on materials properties using synchrotron X-ray and optical spectroscopies in a diamond anvil cell. Information about the graduate student programs at the Jackson School is available at: http://www.jsg.utexas.edu/. Please contact Dr. Jung-Fu Lin at afu@jsg.utexas.edu for further information. Posted by: Jung-Fu Lin |
Graduate and undergraduate research in geologic sequestration of CO2GraduateGulf Coast Carbon Center supports a team of students and post docs working in geologic sequestration (deep subsurface long-duration storage) of the major greenhouse gas CO2, as a method to reduce release to the atmosphere. Student projects are wide ranging, from sedimentology to policy, linked in that they are 1) multidisciplinary and 2) applied to current issues. Students are typically jointly supervised by faculty in geology or petroleum geosystems engineering and staff at the GCCC. A class in geologic sequestration is offered in the fall some years. Posted by: Susan Hovorka |
Laser ablation (U-Th)/He and 4He/3He dating of zircon and apatiteGraduateSeeking motivated Ph.D. students interested in noble gas geo-thermochronology and geochemistry to pursue project in method development and application of laser ablation (U-Th)/He dating and depth profile 4He/3He thermochronometry of zircon and apatite. Our laboratory has a dedicated noble gas extraction line with a SFT magnetic sector noble gas mass spectrometer and dedicated Excimer Laser. The lab also houses two Element2 magnetic sector single collector ICP-MS instruments with a second Excimer laser as well as a state-of-the-art Bruker optical interferometric microscope. The project will develop laser ablation methodology to recover detailed thermal histories from apatite and zircon by laser ablation (U-Th)/He and 4He/3He dating as well as comparison to step-heating fractional loss experiments. Posted by: Daniel Stockli |
LA-ICP-MS single-pule U-Pb depth profiling recovery of thermal historiesGraduateSeeking motivated Ph.D. students interested in in-situ geochronology to pursue project in method development and application of laser ablation continuous mode or single-pulse U-Pb LA-ICP-MS geo-thermochronology as well as trace element speedometry to constrain thermal history or lower and middle crustal rocks. The UTChron Geo- and Thermochronometry laboratory houses two Element2 magnetic sector single collector ICP-MS instruments with a large-volume cell Excimer laser system, ideally suited for depth profiling and U-Pb and trace element split stream analysis. The laboratory also houses a Bruker optical interferometric microscope to control laser ablation rates as well as a Raman system. The focus of applications is on method development and application to the exhumation of middle and lower crustal rocks in rifted margin settings. Posted by: Daniel Stockli |
PhD/MS opportunitiesGraduateMy group welcomes new students with strong motivations on understanding how solid Earth and planets operate and its impacts on shaping habitable surface environments. Prospective students are expected to have a STEM background. If these describe you, feel free to contact me through email for position openings in my group. Posted by: Chenguang Sun |
Ph.D. Project Greece - Petrochronology and tectonic evolution of the Cycladic Blueschist Complex (University of Texas at Austin)Graduate - 4-5 yearsPh.D. project available in the Stockli Research Group and UTChron Laboratory of the Dept of Earth and Planetary Sciences (https://eps.jsg.utexas.edu/) at the Jackson School of Geosciences (https://www.jsg.utexas.edu/) of The University of Texas at Austin. The project focuses on the tectonic and metamorphic evolution of the Cycladic Blueschist Complex in central and northern Greece to constrain the tectonic and metamorphic evolution of one of the world's best-exposed subduction complexes. The project entails field mapping and structural analysis with strong emphasis on accessory mineral (zircon, apatite, titanite) LA-ICP-MS petrochronology, microanalytical mineral imaging and elemental and isotopic mapping, and low-temperature (U-Th)/He thermochronometry of the Cycladic Blueschist Complex in central and north-eastern Greece with the goal of constraining the pre-subduction, subduction, and exhumation history of Cycladic blueschists and understanding subduction underplating within the Hellenic subduction complex. The project is a collaboration with the University of Athens (Prof. Soukis) and we are seek an outstanding, motivated, and independent PhD student with interested in combining field and cutting-edge laboratory work. Interested candidates should contact Dr. Daniel Stockli with any inquiries and questions regarding the project or application procedures. For more information regarding the Stockli Research Group (https://www.jsg.utexas.edu/stockli-group/), the UTChron Laboratory (https://www.jsg.utexas.edu/utchron-lab/) please see these website links. Applications are due January 1, 2024, and information about applying to our program is online using the online application from the Graduate School of the University of Texas at Austin. Applications must be complete in the Graduate and International Admissions Center (GIAC) by the appropriate deadline. ALL ITEMS must be received by the deadline. We no longer require submission of a GRE score for the application for the Fall of 2024, however, international applicants do require submission of TOEFL scores. For general admissions questions, please see https://www.jsg.utexas.edu/education/graduate/admissions/ The University of Texas at Austin is one of the most diverse campuses in the nation. With nearly 52,000 students from all 50 states and 123 countries, we take seriously our motto: What Starts Here Changes the World. We boast 18 colleges and schools with over 300 degree programs, representing a diversity of thought and scholarship that is staggering. The Dept. of Geological Sciences at UT seeks to foster an environment where faculty, students, and staff feel valued and welcome. Posted by: Daniel Stockli |
Undergraduate Research AssistantUndergraduate - ongoingThe position entails working as an Undergraduate Research Assistant (URA) as part of a research team in support of an oil and gas industry funded project which focuses on the depositional history of the Gulf of Mexico. URAs work with geophysical data, geographic information systems, geosoftware and scientific literature to accomplish GBDS research goals. This position is ongoing: 20 hours per week during Fall and Spring semesters. Up to 40 hours during summer. Posted by: Jonathan Virdell |
Graduate opportunities at OCEEMlabGraduate - Five yearsOCEEMlab welcomes future graduate students of high caliber who are passionate about exploring new frontiers in Ocean and Earth science. At OCEEMlab, we study lithosphere-biosphere dynamic processes and complex systems using a combination of fieldwork, advanced computational modeling, and integrative data science. We seek candidates with solid foundations in natural sciences and programming skills. We are especially interested in bringing on board individuals with interdisciplinary knowledge who are highly motivated in weaving disciplines such as geophysics, geology, oceanography, geochemistry, and environmental molecular biology to address contemporary challenging research questions. Most importantly, in the core values of OCEEMlab lies courtesy to one another, encouraging natural curiosity, and cohesive teamwork; As a team, we can achieve far more than individuals. In addition, we firmly believe that groundbreaking discoveries are accomplished by walking on the fringes of science rather than at the center. Thus, we encourage unorthodox genuine thinkers to join our team and help us stretch the envelope of human knowledge a tiny bit further. Posted by: Eric Attias |
Postdocs opportunities at OCEEMlabGraduate - Two yearsOCEEMlab welcomes applicants via UTIG's Distinguished Postdoctoral Fellows Program. At OCEEMlab, we study lithosphere-biosphere dynamic processes and complex systems using a combination of fieldwork, advanced computational modeling, and integrative data science. We are especially interested in bringing on board individuals with interdisciplinary knowledge who are highly motivated in weaving disciplines such as geophysics, geology, oceanography, geochemistry, and environmental molecular biology to address contemporary challenging research questions. Contact Dr. Attias for further information. Posted by: Eric Attias |
Geomechanics and Geofluids Research Jobs for UndergradsUndergraduateDo you want to study the Earth while learning the ins-and-outs of cutting-edge laboratory equipment, from maintenance to experiment design? UT GeoMechanics and GeoFluids investigates fluid flow and deformation in Earth materials using lab experiments, field work, and computer modeling. We seek hard-working and detail-oriented students with a passion for learning. You will assist with ongoing projects: offshoots could lead to your senior thesis. Tasks will include everything from the routine to the experimentally complex. You will work independently or with staff and researchers on experimental setup, equipment maintenance, laboratory clean up, sample preparation, data analysis, and a host of other tasks. For more information contact Josh O'Connell. Learn more about our research projects at UT GeoMechanics and GeoFluids. Posted by: Peter Flemings |
Center for Planetary Systems HabitabilityThe Center for Planetary Systems Habitability is an interdisciplinary research center at UT and is the result of a partnership between the Jackson School, the College of Natural Sciences, and the Cockrell School of Engineering. The center advances our ability to search for life on other planets by collaborating on research that helps better understand where habitable zones develop and how they evolve within planetary systems. |
High-Resolution X-ray Computed Tomography FacilityThe High-Resolution X-ray Computed Tomography Facility at The University of Texas at Austin (UTCT) is a national shared multi-user facility supported by the Instrumentation and Facilities Program of NSF's Earth Sciences (EAR) directorate. UTCT offers scientific researchers across the earth, biological and engineering sciences access to a completely nondestructive technique for visualizing features in the interior of opaque solid objects, and for obtaining digital information on their 3D geometries and properties. |