Events
| Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
| Legend | |||||||||||
| JSG | BEG | UTIG | EPS | ||||||||
UTIG/BEG Seminar Series: Clara Deser, NCAR
Start:December 1, 2023 at 3:00 pm
End:
December 1, 2023 at 4:00 pm
Location:
PRC 196/ROC 1.603
Contact:
Constantino Panagopulos, costa@ig.utexas.edu, 512-574-7376
View Event
NOTE: This seminar is hosted jointly with the Bureau of Economic Geology and will be held at 3pm. The seminar will be followed by a reception in the first floor UTIG lobby at 4pm.
Speaker: Clara Deser, Senior Scientist, National Center for Atmospheric Research, Climate & Global Dynamics
Host: Yuko Okumura
Title: A Range of Outcomes: The combined effects of internal variability and anthropogenic influences on regional climate trends over North America
Abstract: Disentangling the effects of internal climate variability and anthropogenic influences on regional climate trends over North America remains a key challenge with far-reaching implications. Due to its largely unpredictable nature on timescales longer than a decade, internal climate variability limits the accuracy of climate model projections, introduces challenges in attributing past climate trends, and complicates climate model evaluation. In this talk, I shall highlight recent advances in Earth System modeling and physical understanding that have led to novel insights on these topics. In particular, I shall synthesize new findings from “Large Ensemble” simulations with Earth system models, analogous large-ensembles based on observational records, and a method known as “dynamical adjustment” for uncovering anthropogenic climate change.
Biography: Dr. Clara Deser is a Senior Scientist at the National Center for Atmospheric Research where she leads the Climate Analysis Section. She has spent her career studying global climate variability and change in observations and models, with an emphasis on interactions among the atmosphere, oceans and sea ice. Recent projects include the role of internal variability in regional climate trends, the effects of projected Arctic sea ice loss on global climate, asymmetries between El Niño and La Niña events, and modes of decadal-multidecadal climate variability in the Atlantic and Pacific. She pioneered the use of Earth System Model Large Ensemble Simulations to elucidate the combined influences of natural and human-induced contributions to climate variability. Deser has co-authored over 200 peer-reviewed publications, and is a member of the National Academy of Sciences, a Fellow of the American Geophysical Union and a Fellow of the American Meteorological Society. She received her Ph.D in Atmospheric Sciences from the University of Washington in 1989, and her B.S. from the Massachusetts Institute of Technology in 1982. She joined NCAR in 1997.
UTIG Seminar Series: AGU Special! Pascual, Conrad, Miller
Start:December 8, 2023 at 10:30 am
End:
December 8, 2023 at 11:30 am
Location:
PRC 196/ROC 1.603
Contact:
Constantino Panagopulos, costa@ig.utexas.edu, 512-574-7376
View Event
Each year, the week before AGU’s Fall Meeting, we invite UTIG graduate researchers to practice their AGU talks. Each presenter will be given 11 minutes, as per AGU’s oral presentation for 2023, followed by a few minutes for Q&A and feedback.
TALK ONE
Speaker: Mikayla Pascual
Title: Ice-sediment coupling increases modeled ice volume
TALK TWO
Speaker: Ethan Conrad
Title: Investigating the morphotectonics of transpressional systems through erosion-tectonic analog modeling
TALK THREE
Speaker: Carson Miller
Title: Internal sand bank seismic stratigraphy provides insight into paleo-barrier island preservation
Alumni Reception at AGU 2023 in San Francisco
Start:December 13, 2023 at 12:00 pm
End:
December 13, 2023 at 2:00 pm
Contact:
Nina Staeben, nstaeben@jsg.utexas.edu
View Event
AGU Friends and Alumni Reception 2023
WHEN: Wednesday, December 13 | 12:00pm – 2:00pm
WHERE: The Howard at 661 Howard Street, San Francisco, CA 94103
DeFord Lecture | Venkat LakshmiJanuary, 22 2026Time: 3:30 PM - 4:30 PMLocation: JGB 2.324 Progresses and Challenges in Hydrology by Dr. Venkat Lakshmi, professor at the University of Virginia Abstract: In order to study land surface hydrology, we need to use a multitude of tools, namely, modeling, observations and their synergism. After multiple decades of hydrological modeling, we still have major challenges. However, we have novel observations and mathematical methods that are now available and can be harnessed to achieve progress. These include earth observations that are available at global scales and at high spatial resolutions and frequent temporal repeat. Artificial Intelligence and Machine Learning (AI/ML) can be used (specifically Transfer Learning) to determine streamflow in un-gaged or poorly-gaged watersheds. In this talk, I will focus on four major questions and provide examples for each of the questions. These examples will highlight both advances and limitations for each issue. (i) Do earth observations compare well with in-situ counterparts? (ii) How important is rainfall in hydrological modeling? (iii) Can we get higher spatial resolution of earth observations? (iv) How do we study un-gaged/poorly gaged watersheds? |
|
Bureau of Economic Geology Seminar SeriesJanuary, 23 2026Time: 1:00 PM - 2:00 PMLocation: BEG VR Room 1.116C BEG Seminar presented by Dr. Bridget Scanlon, BEG in person. Topic: Remote sensing, hydrology |
|
UTIG Spring Seminar Series 2026: Jinbo WangJanuary, 23 2026Time: 10:30 AM - 11:30 AMLocation: PRC 196/ROC 1.603
|
|
SSL Seminar Series | Kristin BergmannJanuary, 27 2026Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) Temperature and the earliest animals: Quantitative climate reconstruction across the Neoproterozoic–Phanerozoic transition by Dr. Kristin Bergmann Abstract: The Neoproterozoic–Phanerozoic transition records the emergence of complex animals, the origin of biomineralization, and the establishment of modern marine ecosystems—yet the climate context for these evolutionary milestones remains poorly quantified. Reconstructing ancient temperatures requires integrating sedimentology, carbonate petrography, and isotope geochemistry. Our field-based stratigraphic analysis establishes depositional context and identifies the most promising sampling targets; detailed petrographic screening and microstructural analyses constrain diagenetic paragenesis. Clumped-isotope thermometry (Δ47–Δ48) reconstructs temperature signals within this sedimentological framework, resolving the ambiguity between temperature and seawater composition that limits traditional δ¹⁸O approaches. This rocks-first workflow reveals large, directional climate shifts with ecological consequences. In the Tonian and Cryogenian, data from Oman and elsewhere indicate near-modern tropical temperatures before and after Snowball Earth glaciations, suggesting dynamic hydrologic and climatic transitions. During the Ediacaran, post-glacial warming followed by ≥20 °C cooling likely expanded oxygenated habitats and set the stage for early animal diversification. In the Ordovician, ~15 °C of long-term tropical cooling over ~40 Myr culminated in brief but extensive glaciation, providing the climate context for the Great Ordovician Biodiversification Event. By grounding geochemical data in sedimentological and petrographic observations, we build a quantitative framework linking climate and habitability and provide evidence that temperature change guided life\'s evolutionary trajectory in deep time. |
|
SSL Seminar Series | Ted PresentJanuary, 29 2026Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) Biogeochemical Signals of Seafloor Oxygenation by Dr. Ted Present Abstract: Earth’s oxygenation transformed the atmosphere, oceans, and ultimately the seafloor, establishing the carbon and sulfur cycles that govern our planet today. When and how did oxygen penetrate into marine sediments, shifting where organic matter was recycled and setting up the biogeochemical architecture we recognize in modern oceans? I approach this question by studying how microbial and chemical processes at the sediment-water interface leave lasting signatures in sedimentary rocks. Using sulfur isotopes and detailed sedimentology, I will show how Paleozoic carbonates and evaporites track the reorganization of ocean redox structure through critical evolutionary transitions like the Late Ordovician glaciation and mass extinction. The Permian Reef Complex of West Texas demonstrates how cementation and dolomitization patterns archive ancient sulfur cycling, with insights grounded in observations from modern tidal systems where diagenetic processes govern carbon storage along our changing coasts. I will close with how I envision training UT Austin students in integrated field and laboratory approaches to pursue future research leveraging evaporite basins, novel phosphatic archives, and terrestrial carbonates. By extracting environmental signals from the diagenetic processes that create the rock record, this work builds a framework for understanding how Earth’s oxygenation reshaped life and its environment. |
|
Bureau of Economic Geology Seminar SeriesJanuary, 30 2026Time: 1:00 PM - 2:00 PMLocation: BEG VR Room 1.116C BEG Seminar presented in person by Dr. Todd Halihan, Oklahoma State University, and Chief Technical Officer for Aestus, LLC in person Topic: Subsurface hydrogeology |
|
SSL Seminar Series | Mackenzie DayFebruary, 03 2026Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) From sand to stratigraphy: How dunes record the changing landscape of Earth and other planets by Dr. Mackenzie Day Abstract: Desert dune fields preserve rich sedimentary records of environmental change, providing insight into both past climate and modern landscape evolution. This presentation explores three desert systems on Earth and Mars, using dune fields as a lens to examine how landscapes, both ancient and modern, respond to shifting environmental conditions. These investigations address the longevity of Earth’s dune fields, the interplay between wind and water, and the applicability of aeolian sedimentology to planetary bodies beyond Earth. Together, they highlight how dune fields serve as dynamic archives of change, and how Earth, Mars, and other bodies can be studied in tandem as natural laboratories for generalizing aeolian sediment transport to arbitrary fluid-gravity conditions. |
|
SSL Seminar Series | Marjorie CantineFebruary, 05 2026Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) Human, climate, sediment and geobiological history of a rapidly-growing carbonate island by Dr. Marjorie Cantine Abstract: You may have heard the line that real estate is valuable because \"they aren\'t making more land\"; in this talk, I\'ll show you that that\'s not true. I\'ll use the sedimentary and radiocarbon records of a carbonate island in the Caribbean, Little Ambergris Cay, to describe its formation over the last millenium, how its growth relates to past climate, and what it means for mechanisms potentially capable of protecting shorelines in the near future. I\'ll leverage geobiological field experiments to help explain the mechanisms of island growth. Finally, I\'ll share how ongoing work in my group is leveraging geoarchaeological archives to better understand the human and climate histories of the Common Era and inform hazard predictions in the region through testing climate models. I will also briefly describe other work ongoing in my group, which tackles questions at the nexus of time, sedimentary processes, and geochemistry from the Precambrian to the Common Era. |
|
15th Annual Jackson School of Geosciences Student Research SymposiumFebruary, 06 2026Time: 12:00 AM - 12:00 AM |
|
Bureau of Economic Geology Seminar SeriesFebruary, 06 2026Time: 1:00 PM - 2:00 PMLocation: BEG VR Room 1.116C BEG Seminar presented by Stacy Timmons and Mike Timmons, New Mexico Bureau of Geology & Mineral Resources, in person. Topic: New Mexico Geological Survey |
|
SSL Seminar Series | Vamsi GantiFebruary, 10 2026Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) From Dunes to Channel Belts: How Rivers Organize and Move Across Scales by Dr. Vamsi Ganti Abstract: Rivers are Earth’s arteries: they transport water and sediment from uplands to oceans, sustain ecosystems and agriculture, and build the stratigraphic record of past environmental change. Yet rivers are far from static—they are dynamic systems that evolve across scales, from ripples and dunes on the riverbed to entire channel belts. In this seminar, I will present three discoveries that reveal the mechanisms shaping alluvial river form and motion across these scales. (1) Laboratory experiments and theory identify a previously unrecognized transition in river-dune organization at the onset of significant suspended sediment transport. This transition influences flow roughness, flood-driven dune reconfiguration, and the nature of preserved fluvial strata. (2) Using a new image-processing tool, we analyzed 36 years of satellite imagery from 84 rivers to uncover the origins of single- versus multithread channels. Single-thread rivers achieve a balance between lateral erosion and accretion, maintaining equilibrium width, while multithread rivers arise when erosion outpaces accretion, causing individual threads to widen and split. This mechanistic insight informs both planetary geomorphology and cost-effective river restoration. (3) Finally, I’ll show how human activity and climate change are already altering the way rivers flow and evolve. Dams dampen river motion and reduce the number of active threads, whereas increased sediment supply from land-use change and glacial melt are making rivers in the Global South and High Mountain Asia more dynamic. Together, these discoveries provide a mechanistic view of river evolution across scales and highlight why understanding river behavior is essential—not only for managing water, life, and landscapes they sustain today, but also for decoding the history of environmental change recorded in sedimentary strata. |
|
DeFord Lecture | Jake JordanFebruary, 12 2026Time: 3:30 PM - 4:30 PMLocation: JGB 2.324 |
|
DeFord Lecture | Daniel MinisiniFebruary, 19 2026Time: 3:30 PM - 4:30 PMLocation: JGB 2.324 |
|
Bureau of Economic Geology Seminar SeriesFebruary, 20 2026Time: 1:00 PM - 2:00 PMLocation: BEG VR Room 1.116C BEG Seminar presented by Dallas Dunlap, BEG, in person. Topic: Channel Architecture Influenced by Precursor Channelized Submarine Landslide Topography in the Taranaki Basin |
|
Hot Science - Cool Talks: The Biology of LoveFebruary, 20 2026Time: 5:30 PM - 8:30 PMLocation: Welch Hall 2.224 and Grand Hallway What does science say about love and long-term relationships? In this Hot Science – Cool Talks event, biologist Dr. Steven Phelps explores the biology of love through the surprising world of prairie voles, one of the few monogamous mammals. By studying how vole brains form lasting bonds, Dr. Phelps reveals what biology, brain chemistry, and evolution can teach us about human connection and commitment. This engaging talk offers a fresh, science-based look at why we pair up right after Valentines Day! |
