Events
| Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
| Legend | |||||||||||
| JSG | BEG | UTIG | EPS | ||||||||
Soft Rock Seminar: Julio Leva
Start:December 3, 2012 at 12:00 pm
End:
December 3, 2012 at 1:00 pm
Location:
JGB 3.222
Contact:
Rattanaporn Fongngern (Jah), rattanapornf@utexas.edu
BEG Friday Seminar Series: Dr. Osareni Ogiesoba, BEG
Start:December 7, 2012 at 9:00 am
End:
December 7, 2012 at 10:00 am
Location:
J.J. Pickle Research Campus, Bldg. 130, room #1.202
Video Streaming: Not available for this seminar
SEISMIC INVERSION FOR SHALE GAS/OIL IN THE AUSTIN CHALK AND EAGLE FORD SHALE IN A SUBMARINE VOLCANIC TERRAIN, MAVERICK BASIN, SOUTH TEXAS
Osareni (Chris) Ogiesoba
Bureau of Economic Geology (STARR)
Hydrocarbon exploration in the Austin Chalk began in 1916 with the discovery of hydrocarbon traps located in and around volcanic centers (serpentine plugs) encased by Austin Chalk. Owing to the occurrence of hydrocarbons around these serpentine plugs, exploration efforts were focused on identifying surface as well as subsurface locations of volcanic centers within the Austin Chalk. However, with the realization of the existence of fault-related, fractured reservoirs within the Austin Chalk in the 1980’s, fault zones became the main target of exploration—and the drilling spree started. To date, more than 2,000 horizontal wells have been drilled within the Austin Chalk.
Although some of these wells were successful, many others failed either because they did not penetrate hydrocarbon sweet spots, or hydrocarbon-source-rock distribution within and outside the Austin Chalk was unknown. In this project, seismic inversion studies was conducted by combining seismic data with wireline logs to determine sweet spots and predict resistivity distribution (using the deep-induction log) within the Austin Chalk and Eagle Ford Shale in South Texas.
Results show that >90% of productive zones are in the lower part of the Austin Chalk and are associated with Eagle Ford vertical-subvertical en echelon faults, suggesting hydrocarbon migration from the Eagle Ford Shale. Furthermore, the lower Austin Chalk and upper Eagle Ford Shale together appear to constitute a continuous (unconventional) hydrocarbon play.
In addition, local accumulations within the Austin Chalk may be related to Austin TOC-rich zones or migration from the Eagle Ford through fractures. The quality-factor attribute (Q) can serve as a tool for detecting high-water saturated zones. Although Q was not selected as one of the primary attributes for predicting resistivity, it nevertheless can serve as a good reconnaissance tool for predicting resistivity and brittle zones. Wells that have high water production do so because the water-bearing middle Austin Chalk that sits on the downthrown side of Eagle Ford regional faults constitutes a large section of the horizontal well, as evidenced by the Q attribute. Finally, based on the seismic stratigraphic positions of identified submarine volcanic mounds within the Austin Chalk, volcanic activity probably continued up middle Campanian time.
JSG Fall Graduation
Start:December 8, 2012 at 1:00 pm
End:
December 8, 2012 at 3:00 pm
Location:
McCullough Theatre (in the Performing Arts Complex)
Contact:
Erin Negron, erin.negron@jsg.utexas.edu, 512-471-5870
View Event
Event: The Jackson School of Geosciences 2012 Fall Commencement Ceremony and Reception
Speaker: Brewster McCracken
Reception: Immediately following ceremony, at Holland Family Student Center (JGB), refreshments will be served
Gateway to Graduate Studies in Sciences (G2S2)November, 06 2025Time: 12:00 AM - 12:00 AM |
DeFord Lecture | Don FisherNovember, 06 2025Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) What Do Observations of Exhumed Tectonic Plate Boundaries Tell Us About Subduction Zone Earthquakes? by Don Fisher, professor in the Department of Geosciences at Pennsylvania State University Abstract: Field and microstructural observations from exhumed examples of the subduction plate interface are incorporated into a model for the slip behavior of active subduction zones. The observations of natural examples lead to a pressure solution flow law, which is combined with a dislocation creep flow law for quartz-phyllosilicate mixtures and incorporated into a numerical model that depicts interseismic creep, seismicity, and fluid flow, including the fluid flow transients that occur during earthquakes. This model (MEFISTO- a Mineralization, Earthquake, and Fluid flow Integrated SimulatOr) includes:1) an earthquake simulator with temperature-dependent increases in cohesion, 2) a fluid flow model coupled to the earthquake simulator through the link between increasing strength (contact area) and permeability, with both low strength and ambient permeability restored by ruptures of the plate interface, and 3) interseismic creep that responds to variations in stress that could drive acceleration in strain rate toward the later part of the seismic cycle. The fluid moves down a pressure gradient driven by fluid production from metamorphic reactions within and downdip of the seismogenic zone. An increase in average shear stress with increasing lithostatic stress along the interface emerges during simulations, with a very low effective coefficient of friction (~0.07), consistent with the shear stress estimates based on heat flow in the forearc. Pressure solution, which is capable of producing measurable strain in mudstones at the updip end of the seismogenic zone (100-150˚C), increases downdip to a point along the interface where the strain rate is capable of accommodating the plate rate. Model results are used to evaluate how coupled seismic slip and fluid flow relate to earthquake size distributions, aftershocks, precipitation associated with veins, fluid pressure transients, slip deficits during the interseismic period, and fault-restrengthening in the aftermath of earthquakes. |
Geoscience Energy Networking NightNovember, 06 2025Time: 5:00 PM - 7:00 PMLocation: Texas Science & Natural History Museum Join the KBH Energy Center and the Jackson School of Geosciences for our Geoscience Networking Night. This is a unique opportunity for students to engage with companies and professionals across the energy sector. This networking reception will take place in the Texas Science & Natural History Museum right here on campus! We encourage students from all programs and backgrounds to attend and learn more about the energy industry as a whole! Register here: https://utexas.qualtrics.com/jfe/form/SV_b1s9qQdBNGw6kRg |
UTIG Seminar Series: Sophie Nowicki, University of BuffaloNovember, 07 2025Time: 3:00 PM - 4:00 PMLocation: PRC 196/ROC 1.603 NOTE: This seminar is hosted jointly with the Bureau of Economic Geology and will be held at 3pm. The seminar will be followed by a reception in the first floor UTIG lobby at 4pm. Speaker: Sophie Nowicki, Professor, Department of Earth Sciences, University at Buffalo Host: Ginny Catania Title: Rising seas: a known future, yet deeply uncertain… Abstract: Antarctica and Greenland—Earth’s two largest remaining ice sheets—have been undergoing complex changes in mass since the first satellite observations and are major contributors to current sea level rise. While it is certain that these ice sheets will continue to lose mass, how they will evolve in response to ongoing and future climate change remains one of the most uncertain aspects of global sea level projections over human timescales and beyond. This uncertainty has driven significant advances in interdisciplinary research. Ice sheet projections are no longer just a problem for glaciologists; understanding how the atmosphere and ocean will change in a warming world is now equally essential. This presentation will highlight recent progress in modeling and projections of the Antarctic and Greenland ice sheets, underscoring the value of international collaboration. It will also explore the challenges facing community modeling and observational efforts, while emphasizing the insights gained through these intercomparison projects—and the opportunities they offer for the future. |
Bureau of Economic Geology Seminar Series - Joint Session with UTIGNovember, 07 2025Time: 3:00 PM - 5:00 PMLocation: ROC Polar & Climate; Ice sheet modeling in global climate models presented by Dr. Sophie Nowicki University of Buffalo BEG and UTIG Joint Seminar - reception to follow. |
UTIG Seminar Series: Meredith Kelly, Dartmouth CollegeNovember, 14 2025Time: 10:30 AM - 11:30 AMLocation: PRC 196/ROC 1.603 Speaker: Meredith Kelly, Professor, Department of Earth Sciences, Dartmouth College Host: Nathan Bangs Research Theme: Climate & Polar; Role of the tropics in past climate changes |
Bureau of Economic Geology Seminar SeriesNovember, 14 2025Time: 1:00 PM - 2:00 PMLocation: BEG VR Room 1.116C Approaches to writing manuscripts and a short overview of ranking of publications presented In Person by Dr. Robert Loucks, Dr. Bill Ambrose, Dr. Peter Eichhubl |
Hot Science - Cool Talks: Birds are Smarter!November, 14 2025Time: 5:30 AM - 8:30 AMLocation: Welch Hall 2.224 and Grand Hallway What can birds teach us about intelligence? They may have “bird brains,” but they can solve problems, use tools, and even share culture. In the next Hot Science – Cool Talks, Dr. Carlos Botero explores how intelligence evolves and how bird brain scans are helping scientists understand it better. With surprising examples of clever bird behavior, this talk will change how you see our feathered friends forever. |
UTIG Seminar Series: Xian Wu, UT DallasNovember, 21 2025Time: 10:30 AM - 11:30 AMLocation: PRC 196/ROC 1.603 Speaker: Xian Wu, Assistant Professor, Department of Sustainable Earth Systems Sciences, University of Texas at Dallas Host: Yuko Okumura Title: Tropical Pacific decadal prediction: the role of volcanic forcing and ocean initialization Abstract: Decadal climate predictions for the next 1 to 10 years provide critical information for climate adaptation and resilience planning, bridging the gap between well-established seasonal forecasts and centennial projections. As an initial condition–boundary condition problem, decadal predictions rely on both oceanic initial states and external radiative forcings. However, decadal prediction skill remains very low in the tropical Pacific, where ocean-atmosphere processes act as powerful drivers of global climate variations. Here, I will address whether this low prediction skill in the tropical Pacific arises from forecast system deficiencies or intrinsic limits of climate predictability. I will show that the tropical Pacific decadal prediction skill is unexpectedly degraded by the inclusion of historical volcanic aerosol forcing in the prediction system, due to poor model fidelity in simulating volcanic responses. In contrast, the no-volcano prediction system exhibits high skill, arising from the initial-condition memory associated with oceanic Rossby wave adjustment in the tropical Pacific. Furthermore, I will demonstrate the influence of other ocean basins on tropical Pacific decadal prediction through regional ocean initialization experiments. These findings improve our understanding of prediction system behavior in the tropical Pacific, which is crucial for advancing Earth system predictions. |
Bureau of Economic Geology Seminar SeriesNovember, 21 2025Time: 1:00 PM - 2:00 PMSediment-hosted metal deposits in rift basins, geodynamic modeling presented on Zoom by Dr. Anne Glerum GFZ, Helmgoltz Centre for Geosciences Germany |
Fall break / ThanksgivingNovember, 24 2025Time: 12:00 AM - 12:00 AM |
DeFord Lecture | Thomas HarterDecember, 04 2025Time: 3:30 PM - 4:30 PMLocation: Boyd Auditorium (JGB 2.324) |
UTIG Seminar Series: James Thompson, BEGDecember, 05 2025Time: 10:30 AM - 11:30 AMLocation: PRC 196/ROC 1.603 Speaker: James Thompson, Research Assistant Professor, Bureau of Economic Geology, University of Texas at Austin Host: Danielle Touma Research Theme: Climate & MGGST; Remote sensing and geospatial techniques to understand thermodynamics of terrestrial processes and consequent impacts |
Bureau of Economic Geology Seminar SeriesDecember, 05 2025Time: 1:00 PM - 2:00 PMLocation: BEG VR Room 1.116C Microstructural analysis of sedimentary and volcanic rocks presented In Person by Dr. Robert Reed Research Scientist Associate V, BEG |
