References

1.  Ivy, J. Summary of Electrolytic Hydrogen Production: Milestone Completion Report; NREL/MP-560-36734; National Renewable Energy Lab., Golden, CO (US), 2004. https://www.osti.gov/biblio/15009552 (accessed 2022-10-01).

2. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 2014, 4 (11), 3957–3971. https://doi.org/10.1021/cs500923c.

3. Kibsgaard, J.; Chorkendorff, I. Considerations for the Scaling-up of Water Splitting Catalysts. Nat Energy 2019, 4 (6), 430–433. https://doi.org/10.1038/s41560-019-0407-1.

4. Wygant, B. R.; Kawashima, K.; Mullins, C. B. Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts. ACS Energy Lett. 2018, 3 (12), 2956–2966.

5. Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie International Edition 2021, 60 (35), 18981–19006. https://doi.org/10.1002/anie.202015738

6. Kawashima, K.; Márquez-Montes, R. A.; Li, H.; Shin, K.; Cao, C. L.; Vo, K. M.; Son, Y. J.; Wygant, B. R.; Chunangad, A.; Youn, D. H.; Henkelman, G.; Ramos-Sánchez, V. H.; Mullins, C. B. Electrochemical Behavior of a Ni3N OER Precatalyst in Fe-Purified Alkaline Media: The Impact of Self-Oxidation and Fe Incorporation. Mater. Adv. 2021, 2 (7), 2299–2309. https://doi.org/10.1039/D1MA00130B.

7. Corrigan, D. A.; Bendert, R. M. Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH. J. Electrochem. Soc. 1989, 136 (3), 723. https://doi.org/10.1149/1.2096717.

8. Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A Review Unveiling the Critical Roles of Fe in Enhancing OER Activity of Ni and Co Based Catalysts. Nano Energy 2021, 80, 105514. https://doi.org/10.1016/j.nanoen.2020.105514.

9. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137 (13), 4347–4357. https://doi.org/10.1021/ja510442p.

10. Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. J. Phys. Chem. C 2015, 119 (13), 7243–7254. https://doi.org/10.1021/acs.jpcc.5b00105.

11. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136 (18), 6744–6753. https://doi.org/10.1021/ja502379c.

12. Zhang, T.; Nellist, M. R.; Enman, L. J.; Xiang, J.; Boettcher, S. W. Modes of Fe Incorporation in Co–Fe (Oxy)Hydroxide Oxygen Evolution Electrocatalysts. ChemSusChem 2019, 12 (9), 2015–2021. https://doi.org/10.1002/cssc.201801975.

13. Gay, B. L.; Wang, Y.-N.; Bhatt, S.; Tarasewicz, A.; Cooke, D. J.; Milem, E. G.; Zhang, B.; Gary, J. B.; Neidig, M. L.; Hull, K. L. Palladium and Iron Cocatalyzed Aerobic Alkene Aminoboration. Journal of the American Chemical Society 2023, 145 (34), 18939–18947. DOI:10.1021/jacs.3c05790.

14. Ding, Y.; Zheng, H.; Li, J.; Zhang, S.; Liu, B.; Ekberg, C. An Efficient Leaching of Palladium from Spent Catalysts through Oxidation with Fe(III). Materials 2019, 12, 1205. DOI: 10.3390/ma12081205

15. Zhao, M.; Wu, Y.; Cao, J. Carbon‐based Material‐supported Palladium Nanocatalysts in Coupling Reactions: Discussion on Their Stability and Heterogeneity. Applied Organometallic Chemistry 2020, 34 (4). DOI:10.1002/aoc.5539.

16. Deraedt, C.; Astruc, D. “Homeopathic” Palladium Nanoparticle Catalysis of Cross Carbon–Carbon Coupling Reactions. Accounts of Chemical Research 2013, 47 (2), 494–503. DOI:10.1021/ar400168s.

17. Dong, Z.; Ye, Z. Reusable, Highly Active Heterogeneous Palladium Catalyst by Convenient Self-Encapsulation Cross-Linking Polymerization for Multiple Carbon-carbon Cross-Coupling Reactions at ppm to ppb Palladium Loadings. Advanced Synthesis & Catalysis 2014, 356 (16), 3401–3414. DOI:10.1002/adsc.201400520.

18. Gaikwad, A. V.; Holuigue, A.; Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G. Ion- and Atom-Leaching Mechanisms from Palladium Nanoparticles in Cross-Coupling Reactions. Chemistry – A European Journal 2007, 13 (24), 6908–6913. DOI:10.1002/chem.200700105.

19. Simitchiev, K.; Stefanova, V.; Kmetov, V.; Andreev, G.; Sanchez, A.; Canals, A. Investigation of ICP-MS Spectral Interferences in the Determination of Rh, PD and PT in Road Dust: Assessment of Correction Algorithms via Uncertainty Budget Analysis and Interference Alleviation by Preliminary Acid Leaching. Talanta 2008, 77 (2), 889–896. DOI:10.1016/j.talanta.2008.07.041.

20. Balaram, V. Current and Emerging Analytical Techniques for Geochemical and Geochronological Studies. Geological Journal 2021, 56 (5), 2300–2359. https://doi.org/10.1002/gj.4005.

21. Dial, A. R.; Misra, S.; Landing, W. M. Determination of Low Concentrations of Iron, Arsenic, Selenium, Cadmium, and Other Trace Elements in Natural Samples Using an Octopole Collision/Reaction Cell Equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer. Rapid Communications in Mass Spectrometry 2015, 29 (8), 707–718. https://doi.org/10.1002/rcm.7152.

22. Amais, R. S.; Donati, G. L.; Nóbrega, J. A. Application of the Interference Standard Method for the Determination of Sulfur, Manganese and Iron in Foods by Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta 2011, 706 (2), 223–228. https://doi.org/10.1016/j.aca.2011.08.041

23. Duan, X.; Regelous, M. Rapid Determination of 26 Elements in Iron Meteorites Using Matrix Removal and Membrane Desolvating Quadrupole ICP-MS. J. Anal. At. Spectrom. 2014, 29 (12), 2379–2387. https://doi.org/10.1039/C4JA00244J.

24. Sohrin, Y.; Urushihara, S.; Nakatsuka, S.; Kono, T.; Higo, E.; Minami, T.; Norisuye, K.; Umetani, S. Multielemental Determination of GEOTRACES Key Trace Metals in Seawater by ICPMS after Preconcentration Using an Ethylenediaminetriacetic Acid Chelating Resin. Anal. Chem. 2008, 80 (16), 6267–6273. https://doi.org/10.1021/ac800500f.

25. Chandrasekaran, K.; Karunasagar, D. Determination of Trace Elements in the Pb–Bi-Eutectic System by Inductively Coupled Plasma-Quadrupole Mass Spectrometry after Sequential Removal of the Matrix by Precipitation. J. Anal. At. Spectrom. 2014, 29 (9), 1720–1725. https://doi.org/10.1039/C4JA00138A.

26. Chandrasekaran, K.; Karunasagar, D. Dispersive Liquid–Liquid Microextraction for Simultaneous Preconcentration of Platinum Group Elements (Pd, Os, Ir, and Pt) and Selected Transition Elements (Ag, Cd, Ta, and Re) at Parts per Trillion Levels in Water and Their Determination by Inductively Coupled Plasma-Mass Spectrometry. J. Anal. At. Spectrom. 2016, 31 (5), 1131–1140. https://doi.org/10.1039/C6JA00035E

27. Bäuchle, M.; Lüdecke, T.; Rabieh, S.; Calnek, K.; G. Bromage, T. Quantification of 71 Detected Elements from Li to U for Aqueous Samples by Simultaneous-Inductively Coupled Plasma-Mass Spectrometry. RSC Advances 2018, 8 (65), 37008–37020. https://doi.org/10.1039/C8RA07070A.

28. Šelih, V. S.; Šala, M.; Drgan, V. Multi-Element Analysis of Wines by ICP-MS and ICP-OES and Their Classification According to Geographical Origin in Slovenia. Food Chemistry 2014, 153, 414–423. https://doi.org/10.1016/j.foodchem.2013.12.081.

29. Balaram, V. Strategies to Overcome Interferences in Elemental and Isotopic Geochemical Analysis by Quadrupole Inductively Coupled Plasma Mass Spectrometry: A Critical Evaluation of the Recent Developments. Rapid Communications in Mass Spectrometry 2021, 35 (10), e9065. https://doi.org/10.1002/rcm.9065.

30. Leonhard, P.; Pepelnik, R.; Prange, A.; Yamada, N.; Yamada, T. Analysis of Diluted Sea-Water at the Ng L−1 Level Using an ICP-MS with an Octopole Reaction Cell. J. Anal. At. Spectrom. 2002, 17 (3), 189–196. https://doi.org/10.1039/B110180N.

31. Donati, G. L.; Amais, R. S.; Nóbrega, J. A. Interference Standard: A New Approach to Minimizing Spectral Interferences in Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2011, 26 (9), 1827–1832. https://doi.org/10.1039/C1JA10136F.

32. V. Balaram, * M. Satyanarananan. Use of Xenon as Internal Standard for the Accurate Determination of Trace Elements in Water Samples by ICP-MS. Atomic Spectroscopy 2020, 33 (2), 41–47. https://doi.org/10.46770/AS.2012.02.001.

33.  Lu, Y.; Sun, Y. An On-Line Electrodialyzer-ICP-MS Analytical System for Direct Determination of Trace Metal Impurities in KOH. J. Anal. At. Spectrom. 2008, 23 (4), 574–578. https://doi.org/10.1039/B712296A.

34. Márquez, R. A.; Kawashima, K.; Son, Y. J.; Castelino, G.; Miller, N.; Smith, L. A.; Chukwuneke, C. E.; Mullins, C. B. Getting the Basics Right: Preparing Alkaline Electrolytes for Electrochemical Applications. ACS Energy Lett. 2023, 8 (2), 1141–1146. https://doi.org/10.1021/acsenergylett.2c02847.