References

(1)       Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44 (15), 5148–5180. https://doi.org/10.1039/C4CS00448E

(2)       Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-Precious-Metal Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretical Calculations, and Recent Advances. Chem. Soc. Rev. 2020. https://doi.org/10.1039/D0CS00575D

(3)       Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent Advances in Transition Metal-Based Electrocatalysts for Alkaline Hydrogen Evolution. J. Mater. Chem. A 2019, 7 (25), 14971–15005. https://doi.org/10.1039/C9TA03220G

(4)       Wygant, B. R.; Kawashima, K.; Mullins, C. B. Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts. ACS Energy Lett. 2018, 3 (12), 2956–2966. https://doi.org/10.1021/acsenergylett.8b01774

(5)       Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355 (6321). https://doi.org/10.1126/science.aad4998

(6)       Marquez-Montes, R. A.; Kawashima, K.; Son, Y. J.; Weeks, J. A.; Sun, H. H.; Celio, H.; Ramos-Sánchez, V. H.; Mullins, C. B. Mass Transport-Enhanced Electrodeposition of Ni–S–P–O Films on Nickel Foam for Electrochemical Water Splitting. J. Mater. Chem. A 2021, 9, 7736–7749. https://doi.org/10.1039/D0TA12097A

(7)       Shi, Y.; Du, W.; Zhou, W.; Wang, C.; Lu, S.; Lu, S.; Zhang, B. Unveiling the Promotion of Surface-Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angew. Chem. 2020, 132 (50), 22656–22660. https://doi.org/10.1002/ange.202011097

(8)       Dette, C.; Hurst, M. R.; Deng, J.; Nellist, M. R.; Boettcher, S. W. Structural Evolution of Metal (Oxy)Hydroxide Nanosheets during the Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11 (6), 5590–5594. https://doi.org/10.1021/acsami.8b02796

(9)       Jovanovič, P.; Hodnik, N.; Ruiz-Zepeda, F.; Arčon, I.; Jozinović, B.; Zorko, M.; Bele, M.; Šala, M.; Šelih, V. S.; Hočevar, S.; Gaberšček, M. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-Ray Absorption Spectroscopy Study. J. Am. Chem. Soc. 2017, 139 (36), 12837–12846. https://doi.org/10.1021/jacs.7b08071

(10)     Baldizzone, C.; Gan, L.; Hodnik, N.; Keeley, G. P.; Kostka, A.; Heggen, M.; Strasser, P.; Mayrhofer, K. J. J. Stability of Dealloyed Porous Pt/Ni Nanoparticles. ACS Catal. 2015, 5 (9), 5000–5007. https://doi.org/10.1021/acscatal.5b01151

(11)     Hodnik, N.; Jovanovič, P.; Pavlišič, A.; Jozinović, B.; Zorko, M.; Bele, M.; Šelih, V. S.; Šala, M.; Hočevar, S.; Gaberšček, M. New Insights into Corrosion of Ruthenium and Ruthenium Oxide Nanoparticles in Acidic Media. J. Phys. Chem. C 2015, 119 (18), 10140–10147. https://doi.org/10.1021/acs.jpcc.5b01832

(12)     Cherevko, S.; Zeradjanin, A. R.; Topalov, A. A.; Kulyk, N.; Katsounaros, I.; Mayrhofer, K. J. J. Dissolution of Noble Metals during Oxygen Evolution in Acidic Media. ChemCatChem 2014, 6 (8), 2219–2223. https://doi.org/10.1002/cctc.201402194

(13)     Gatalo, M.; Jovanovič, P.; Polymeros, G.; Grote, J.-P.; Pavlišič, A.; Ruiz- Zepeda, F.; Šelih, V. S.; Šala, M.; Hočevar, S.; Bele, M.; Mayrhofer, K. J. J.; Hodnik, N.; Gaberšček, M. Positive Effect of Surface Doping with Au on the Stability of Pt-Based Electrocatalysts. ACS Catal. 2016, 6 (3), 1630–1634. https://doi.org/10.1021/acscatal.5b02883

(14)     Kasian, O.; Geiger, S.; Li, T.; Grote, J.-P.; Schweinar, K.; Zhang, S.; Scheu, C.; Raabe, D.; Cherevko, S.; Gault, B.; Mayrhofer, K. J. J. Degradation of Iridium Oxides via Oxygen Evolution from the Lattice: Correlating Atomic Scale Structure with Reaction Mechanisms. Energy Environ. Sci. 2019, 12 (12), 3548–3555. https://doi.org/10.1039/C9EE01872G

(15)     Márquez-Montes, R. A.; Kawashima, K.; Vo, K. M.; Chávez-Flores, D.; Collins-Martínez, V. H.; Mullins, C. B.; Ramos-Sánchez, V. H. Simultaneous Sulfite Electrolysis and Hydrogen Production Using Ni Foam-Based Three-Dimensional Electrodes. Environ. Sci. Technol. 2020, 54 (19), 12511–12520. https://doi.org/10.1021/acs.est.0c04190

(16)     Schalenbach, M.; Kasian, O.; Ledendecker, M.; Speck, F. D.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. The Electrochemical Dissolution of Noble Metals in Alkaline Media. Electrocatalysis 2018, 9 (2), 153–161. https://doi.org/10.1007/s12678-017-0438-y

(17)     Kawashima, K.; Cao, C. L.; Li, H.; Márquez-Montes, R. A.; Wygant, B. R.; Son, Y. J.; Guerrera, J. V.; Henkelman, G.; Mullins, C. B. Evaluation of a V8C7 Anode for Oxygen Evolution in Alkaline Media: Unusual Morphological Behavior. ACS Sustain. Chem. Eng. 2020, 8 (37), 14101–14108. https://doi.org/10.1021/acssuschemeng.0c04759

(18)     Chen, Z.; Wu, R.; Liu, M.; Liu, Y.; Xu, S.; Ha, Y.; Guo, Y.; Yu, X.; Sun, D.; Fang, F. Tunable Electronic Coupling of Cobalt Sulfide/Carbon Composites for Optimizing Oxygen Evolution Reaction Activity. J. Mater. Chem. A2018, 6 (22), 10304–10312. https://doi.org/10.1039/C8TA01244J.

(19)     Zhai, L.; Benedict Lo, T. W.; Xu, Z.-L.; Potter, J.; Mo, J.; Guo, X.; Tang, C. C.; Edman Tsang, S. C.; Lau, S. P. In Situ Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium. ACS Energy Lett. 2020, 5 (8), 2483–2491. https://doi.org/10.1021/acsenergylett.0c01385

(20)     Zhu, Y.; Chen, H.-C.; Hsu, C.-S.; Lin, T.-S.; Chang, C.-J.; Chang, S.-C.; Tsai, L.-D.; Chen, H. M. Operando Unraveling of the Structural and Chemical Stability of P-Substituted CoSe2 Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Lett. 2019, 4 (4), 987–994. https://doi.org/10.1021/acsenergylett.9b00382

(21)     Wang, Y.; Zhao, S.; Zhu, Y.; Qiu, R.; Gengenbach, T.; Liu, Y.; Zu, L.; Mao, H.; Wang, H.; Tang, J.; Zhao, D.; Selomulya, C. Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. iScience2020, 23 (1), 100761. https://doi.org/10.1016/j.isci.2019.100761.

(22)     Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. J. Phys. Chem. C 2015, 119 (13), 7243–7254. https://doi.org/10.1021/acs.jpcc.5b00105

(23)     Gu, H.; Shi, G.; Chen, H.-C.; Xie, S.; Li, Y.; Tong, H.; Yang, C.; Zhu, C.; Mefford, J. T.; Xia, H.; Chueh, W. C.; Chen, H. M.; Zhang, L. Strong Catalyst–Support Interactions in Electrochemical Oxygen Evolution on Ni–Fe Layered Double Hydroxide. ACS Energy Lett. 2020, 5 (10), 3185–3194. https://doi.org/10.1021/acsenergylett.0c01584

(24)     Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136 (18), 6744–6753. https://doi.org/10.1021/ja502379c

(25)     He, Q.; Wan, Y.; Jiang, H.; Pan, Z.; Wu, C.; Wang, M.; Wu, X.; Ye, B.; Ajayan, P. M.; Song, L. Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS Energy Lett. 2018, 3 (6), 1373–1380. https://doi.org/10.1021/acsenergylett.8b00515

(26)     Patidar, R.; Rebary, B.; Bhadu, G. R.; Patel, G. ICP-MS Method Development and Validation for Determination of Trace Elemental Impurities in Caustic Potash. Int. J. Mass Spectrom. 2020, 454, 116356. https://doi.org/10.1016/j.ijms.2020.116356

(27)     Lu, Y.; Sun, Y. An On-Line Electrodialyzer-ICP-MS Analytical System for Direct Determination of Trace Metal Impurities in KOH. J. Anal. At. Spectrom. 2008, 23 (4), 574–578. https://doi.org/10.1039/B712296A

(28)     Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chem. Mater. 2017, 29 (1), 26–39. https://doi.org/10.1021/acs.chemmater.6b02626

(29)     Sun, D.; Sun, F.; Deng, X.; Li, Z. Mixed-Metal Strategy on Metal–Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Inorg. Chem. 2015, 54 (17), 8639–8643. https://doi.org/10.1021/acs.inorgchem.5b01278

(30)     ICP-MS: Measuring Phosphorous and Sulfur in Organic Matrices: https://www.solvias.com/news-events/2018/12/ICP-MS-measuring-phosphorus-and-sulfur-in-organic-matrices.php (accessed 2021 -09 -29)

(31)     Tomoko, V. Dramatically Improved Selenium Analysis with the Thermo Scientific ICAP RQ ICP-MS Using Pure Hydrogen CRC Gas, 2017.

(32)     Al-Saad, K. A.; Amr, M. A.; Helal, A. I. Collision/Reaction Cell ICP-MS with Shielded Torch and Sector Field ICP-MS for the Simultaneous Determination of Selenium Isotopes in Biological Matrices. Biol. Trace Elem. Res. 2011, 140 (1), 103–113. https://doi.org/10.1007/s12011-010-8677-2

(33)     Jackson, B. Accurate and Sensitive Analysis of Arsenic and Selenium in Foods: https://www.agilent.com/cs/library/applications/5991-5860EN.pdf (accessed 2021 -09 -29)

(34)     Michael Dayah. Ptable First Ionization: https://ptable.com/?lang=en#Properties/Ionization/1st (accessed 2021 -09 -29)

(35)     Narukawa, T.; Iwai, T.; Chiba, K. An ICP Index for ICP-MS Determinations – New Selection Rules for Internal Standards in ICP-MS Determinations and Carbon Enhancement Effect. J. Anal. At. Spectrom. 2017, 32 (8), 1547–1553. https://doi.org/10.1039/C7JA00132K

(36)     ICP-MS? | Quadrupole ICP-MS Lab https://www.jsg.utexas.edu/icp-ms/icp-ms/ (accessed 2021 -09 -30)

(37)     Agilent 7500 Series ICP-MS Hardware Manual. Agilent Technologies September 2008