References

Alene, Mulugeta, et al., 2006, The Tambien Group, Ethiopia: An Early Cryogenian (Ca. 800–735Ma) Neoproterozoic Sequence in the Arabian–Nubian Shield: Precambrian Research, vol. 147, no. 1-2, pp. 79–99., doi:10.1016/j.precamres.2006.02.002. 

Allwood, A.C., Kamber, B.S., Walter, M.R., Burch, I.W., and Kanik, I., 2010, Trace elements record depositional history of an Early Archean stromatolitic carbonate platform: Chemical Geology, v. 270, no. 1-4, p. 148–163, doi:10.1016/j.chemgeo.2009.11.013.

Aries, S., Valladon, M., Polvé, M., and Dupré, B., 2000, A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples: Geostandards Newsletter, v. 24, no. 1, p. 19–31, doi:10.1111/j.1751-908X.2000.tb00583.x.

Bau, M., Koschinsky, A., Dulski, P., and Hein, J.R., 1996, Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater: Geochimica et Cosmochimica Acta, v. 60, no. 10, p. 1709–1725, doi:https://doi.org/10.1016/0016-7037(96)00063-4.

Beyth, M., 2001, Preliminary indications for Snowball Earth in the East African Orogen: Geological Society of Australia Abstracts, v. 65.

Beyth, M., et al., 2003, Crustal exhumation and indications for Snowball Earth in the East African Orogen: north Ethiopia and east Eritrea. Precambrian Research, 123(2-4), p. 187-201. https://doi.org/10.1016/S0301-9268(03)00067-6

Bosak, T., Lahr, D.J., Pruss, S.B., Macdonald, F.A., Gooday, A.J., Dalton, L. and Matys, E.D., 2012. Possible early foraminiferans in post-Sturtian (716− 635 Ma) cap carbonates. Geology, 40(1), pp.67-70.

Christie-Blick, N., Sohl, L. E., & Kennedy, M. J. (1999). Considering a neoproterozoic snowball Earth. Science. https://doi.org/10.1126/science.284.5417.1087a

Corkeron, M., 2007, ‘Cap carbonates’ and Neoproterozoic glacigenic successions from the Kimberley region, north-west Australia: Sedimentology, v. 54, p. 871–903, doi: 10.1111/j.1365-3091.2007.00864.x

Corsetti, F.A., and Grotzinger, J.P., 2005, Origin and significance of tube structures in Neoproterozoic post-glacial cap carbonates: Example from Noonday Dolomite, Death Valley, United States: Palaios, v. 20, p. 348–362, doi:10.2110/palo.2003.p03-96.

Corsetti, F.A., and Kaufman, A.J., 2003, Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California: Bulletin of the Geological Society of America, v. 115, p. 916–932, doi:10.1130/B25066.1.

Corsetti, F.A., and Lorentz, N.J., 2006, On Neoproterozoic Cap Carbonates as Chronostratigraphic Markers, in Xiao, S. and Kaugman, A.J. eds., Neoproterozoic Geobiology and Paleobiology, Dordrecht, Springer, p. 273–294, doi:10.1007/1-4020-5202-2_9.

Cox, G., Isakson, V., Hoffman, P., Gernon, T., Schmitz, M., Shahin, S., Collins, A., Preiss, W., Blades, M., Mitchell, R., & Nordsvan, A. (2018). South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Research, 315, 257–263. https://doi.org/10.1016/j.precamres.2018.07.007

Creveling, J.R., Bergmann, K.D., and Grotzinger, J.P., 2016, Cap carbonate platform facies model,         Noonday Formation, SE California: Bulletin of the Geological Society of America, v. 128, no. 7/8, p. 1249–1269, doi:10.1130/B31442.1.

Crittenden et al., 1952, Parleys Canyon to Traverse Range; Geology of the Wasatch Mountains east of Salt Lake City, in Geology of the Central Wasatch Mountains, Utah: Utah Geol. Soc. Guidebook to Geology of Utah, no. 8, p. 1-37.

Crittenden et al., 1971, Nomenclature and correlation of some upper Precambrian and basal Cambrian sequences in western Utah and southeastern Idaho: Geol. Soc. America Bull., v. 82, no. 3, p. 581- 602.

Fanning, C.M., Link, P.K., 2003. Late Sturtian U–Pb SHRIMP age for Neoproterozoic Diamictites of the Pocatello Formation, southeastern Idaho: Geol. Soc.  America Abstracts with Programs v. 35 no. 6, p. 389.

Font, E., Nédélec, A., Trindade, R., Macouin, M., & Charrière, A. (2006). Chemostratigraphy of the Neoproterozoic Mirassol d’Oeste cap dolostones (Mato Grosso, Brazil): An alternative model for Marinoan cap dolostone formation. Earth and Planetary Science Letters, 250(1), 89–103. https://doi.org/10.1016/j.epsl.2006.06.047

Frakes, L.A., and Crowell, J.C., 1967, Facies and Paleogeography of the Late Paleozoic diamictite, Falkland Islands: Geol. Soc. America Bull., v. 78, no. 1, p. 37-57.

Giddings, J., & Wallace, M. (2009). Sedimentology and C-isotope geochemistry of the “Sturtian” cap carbonate, South Australia. Sedimentary Geology, 216(1), 1–14. https://doi.org/10.1016/j.sedgeo.2009.01.007

Gyollai, I., Polgari, M., Fintor, K., Pal-Molnar, E., Popp, F. and Koeberl, C., 2017. Microbial activity records in Marinoan Snowball Earth postglacial transition layers connecting diamictite with cap carbonate (Otavi Group, NW-Namibia). Austrian Journal of Earth Sciences, 110(1).

Hoffman, P. F. (2011). Strange bedfellows: Glacial diamictite and cap carbonate from the Marinoan (635 Ma) glaciation in Namibia. Sedimentology, 58(1), 57–119. https://doi.org/10.1111/j.1365-3091.2010.01206.x

Hoffman, P.F., and Li, Z.-X., 2009, A palaeogeographic context for Neoproterozoic glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 277, p. 158–172, doi:10.1016/j.palaeo.2009.03.013.

Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic snowball earth. science281(5381), 1342-1346.

Huang, J., Chu, X., Chnag, H., and Feng, L., 2009, Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges: Chinese Science Bulletin, v. 54, p. 3,295-3,302, doi: https://doi.org/10.1007/s11434-009-0305-1.

James, N.P., Narbonne, G.M., and Kyser, T.K., 2001, Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown: Canadian journal of earth sciences, v. 38, p. 1229–1262, doi: 10.1139/cjes-38-8-1229

Johnson, B.W., Poulton, S.W. and Goldblatt, C., 2017. Marine oxygen production and open water           supported an active nitrogen cycle during the Marinoan Snowball Earth. Nature communications, 8(1), pp.1-10.

Kasemann, S. A., Hawkesworth, C. J., Prave, A. R., Fallick, A. E., & Pearson, P. N. (2005). Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: Evidence for extreme environmental change. Earth and Planetary Science Letters, 231(1–2), 73–86. https://doi.org/10.1016/j.epsl.2004.12.006

Keating, G., 2004, Isotope Abundances and Interferences: Perkin Elmer, 14p.

Kuhn, T., Bau, M., Blum, N., and Halbach, P., 1998, Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge: Earth and Planetary Science Letters, v. 163, no. 1-4, p. 207–220, doi:10.1016/S0012-821X(98)00188-5.

Kyser, T.K., James, N.P., and Bone, Y., 1998, Alteration of Cenozoic cool-water carbonates to low-Mg calcite in marine waters, Gambier Embayment, South Australia: Journal of sedimentary research, v. 68, p. 947–955, doi: 10.1306/D42688BA-2B26-11D7-8648000102C1865D

Lawrence, M.G., Greig, A., Collerson, K.D., and Kamber, B.S., 2006, Rare earth element and yttrium variability in South East Queensland waterways: Aquatic Geochemistry, v. 12, no. 1,  p. 39–72, doi:10.1007/s10498-005-4471-8.

Le Heron, D., Cox, G., Trundley, A., & Collins, A. (2011). Two Cryogenian glacial successions compared: Aspects of the Sturt and Elatina sediment records of South Australia. Precambrian Research, 186(1-4), 147–168. https://doi.org/10.1016/j.precamres.2011.01.014

Lechte, M.A., Wallace, M.W. and Hoffmann, K.H., 2019. Glacio-marine iron formation deposition in a c. 700 Ma glaciated margin: insights from the Chuos Formation, Namibia. Geological Society, London, Special Publications, 475(1), pp.9-34.

Lichte, F.E., Meier, A.L., and Crock, J.G., 1987, Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry: Analytical chemistry, v. 59, p. 1150–1157,

Link, P.K., 1983. Glacial and tectonically influenced sedimentation in the Upper Proterozoic Pocatello Formation, southeastern Idaho. In: Miller, D.M., Todd, V.R., Howard, K.A. (Eds.), Tectonic and Stratigraphic Studies in the Eastern Great Basin. Geological Society of America Memoir v. 157, p. 165–181.

Liu, X.-M., Hardisty, D.S., Lyons, T.W., and Swart, P.K., 2019, Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank: Geochimica et Cosmochimica Acta, v. 248, p. 25–42, doi:https://doi.org/10.1016/j.gca.2018.12.028.

Lorentz, J.L., 2003, Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: implications for Neoproterozoic earth system behavior, Precambrian Research, v. 130, p. 57-70.

Ludlam, J.C., 1942, Pre-Cambrian formations at Pocatello, Idaho: Jour. Geol., v. 50, no. 1, p. 85-95

Macdonald, F.A., Prave, A.R., Petterson, R., Smith, E.F., Pruss, S.B., Oates, K., Waechter, F., Trotzuk, D., and Fallick, A.E., 2013, The Laurentian record of Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley, California: Geological Society of America Bulletin, v. 125, no.7-8, p. 1,203-1,223, doi: https://doi.org/10.1130/B30789.1.

Marian, M.L., and Osborne, R.H., 1992, Petrology, petrochemistry, and stromatolites of the Middle to Late Proterozoic Beck Spring Dolomite, eastern Mojave Desert, California: Canadian Journal of Earth Sciences, v. 29, no. 12, p. 2595–2609, doi:10.1139/e92-206.

Mbuyi, K., and Prave, A.R., 1993, Unconformities in the mid-Late Proterozoic Pahrump Group: Stratigraphic evidence from the upper member Crystal Spring Formation: Geological Society of America Abstracts with Programs, Reno, v. 25, no.5, p. 116.

Nogueira, A., Riccomini, C., Sial, A., Moura, C., & Fairchild, T. (2003). Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geology (Boulder), 31(7), 613–. https://doi.org/10.1130/0091-7613(2003)031<0613:SDATBO>2.0.CO;2

Nogueira, A., Riccomini, C., Sial, A., Moura, C., Trindade, R., & Fairchild, T. (2007). Carbon and strontium isotope fluctuations and paleoceanographic changes in the late Neoproterozoic Araras carbonate platform, southern Amazon craton, Brazil. Chemical Geology, 237(1), 168–190. https://doi.org/10.1016/j.chemgeo.2006.06.016

Petterson, R., Prave, A.R., Wernicke, B.P., and Fallick, A.E., 2011, The neoproterozoic Noonday formation, Death Valley region, California: Bulletin of the Geological Society of America, v. 123, p. 1317–1336, doi:10.1130/B30281.1.

Prave, A.R., Condon, D.J., Hoffmann, K.H., Tapster, S. and Fallick, A.E., 2016. Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology, 44(8), pp.631-634.

Pruss, S. B., Bosak, T., Macdonald, F. A., McLane, M., & Hoffman, P. F. (2010). Microbial facies in a Sturtian cap carbonate, the Rasthof Formation, Otavi Group, northern Namibia. Precambrian Research, 181(1–4), 187–198. https://doi.org/10.1016/j.precamres.2010.06.006

Rodler, A.S., Frei, R., Gaucher, C., and Germs, G.J.B., 2016, Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia: Precambrian research, v. 286, p. 234–249, doi: https://doi.org/10.1016/j.precamres.2016.10.007

Schroder, S., and Grotzinger, J.P., 2007, Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman: Journal of the Geological Society, v. 164, no. 1, p. 175-187, doi: https://doi.org/10.1144/0016-76492005-022.

Smith, L.H., Kaufman, A.J., Knoll, A.H., Link, P.K., 1994. Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and lower Brigham Group, Idaho, USA. Geol. Magazine v. 131, no. 3, p. 301–314.

Stern, R.J. and Miller, N.R., 2019. Neoproterozoic Glaciation—Snowball Earth Hypothesis. Age (Ma),   632(1.0), pp.632-3.

Swanson-Hysell, et al., 2015,  Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic: Geology, v. 43, p. 323-326, doi:10.1130/G36347.1.

Tanaka, K., Takahashi, Y., and Shimizu, H., 2007, Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: An examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis: Analytica Chimica Acta, v. 583, no. 2 p. 303–309, doi:10.1016/j.aca.2006.10.023.

Tostevin, R., Shields, G.A., Tarbuck, G.M., He, T., Clarkson, M.O., and Wood, R.A., 2016, Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings: Chemical Geology, v. 438, p. 146–162, doi:10.1016/j.chemgeo.2016.06.027.

Trimble, D. E., 1976, Geology of the Michaud and Pocatello Quadrangles, Bannock and Power Counties, Idaho: Geol. Sur. Bull., 1400.

Wang, Q., Lin, Z., and Chen, D., 2014, Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China: Sedimentary Geology, v. 304, p. 59-70, doi: https://doi.org/10.1016/j.sedgeo.2014.02.006.

Xie, Q., Jain, J., Sun, M., Kerrich, R., and Fan, J., 1994, Icp-ms analysis of basalt Bir-1 for trace elements: Geostandards and geoanalytical research, v. 18, p. 53–63, doi: 10.1111/j.1751-908X.1994.tb00504.x