References
1. Alexakis, D. E., Bathrellos, G. D., Skilodimou, H. D., & Gamvroula, D. E. (2021). Spatial distribution and evaluation of arsenic and zinc content in the soil of a karst landscape. Sustainability, 13(12), 6976. https://doi.org/10.3390/su13126976
2. Alhagri, I. A., Al-Hakimi, A. N., Al-Hazmy, S. M., & Albadri, A. E. A. E. (2024). Determination of trace and heavy metals in bottled drinking water in Yemen by ICP-MS. Results in Chemistry, 8, 101558. https://doi.org/10.1016/j.rechem.2024.101558
3. Austin Watch: News, weather, sports, breaking news. KEYE. (n.d.). https://cbsaustin.com/watch
4. Beauchemin, Diane., McLaren, J. W., Mykytiuk, A. P., & Berman, S. S. (1987). Determination of trace metals in a river water reference material by inductively coupled plasma mass spectrometry. Analytical Chemistry, 59(5), 778–783. https://doi.org/10.1021/ac00132a021
5. Bigalke, M., Weyer, S., Kobza, J., & Wilcke, W. (2010). Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochimica et Cosmochimica Acta, 74(23), 6801–6813. https://doi.org/10.1016/j.gca.2010.08.044
6. Christian, L. N., Banner, J. L., & Mack, L. E. (2011). Sr isotopes as tracers of anthropogenic influences on stream water in the Austin, Texas, area. Chemical Geology, 282(3-4), 84-97. https://doi.org/10.1016/j.chemgeo.2011.01.011
7. Cressle Community fellows. CRESSLE Community Fellows | Environmental Science Institute | Jackson School of Geosciences | The University of Texas at Austin. (n.d.). https://www.esi.utexas.edu/community-engagement/cressle/cressle-community-fellows/
8. Cressle. CRESSLE | Environmental Science Institute | Jackson School of Geosciences | The University of Texas at Austin. (n.d.). https://www.esi.utexas.edu/community-engagement/cressle/
9. “Definition and Procedure for the Determination of the Method Detection Limit – Revision 2,” Title 40 Code of Federal Regulations, Pt 136 Appendix B. 2024 ed.
10. Desaulty, A.-M., Perret, S., Maubec, N., & Négrel, P. (2020). Tracking anthropogenic sources in a small catchment using Zn-isotope signatures. Applied Geochemistry, 123, 104788. https://doi.org/10.1016/j.apgeochem.2020.104788
11. Desaulty, A.-M., & Petelet-Giraud, E. (2020). Zinc isotope composition as a tool for tracing sources and fate of metal contaminants in rivers. Science of The Total Environment, 728, 138599. https://doi.org/10.1016/j.scitotenv.2020.138599
12. Elemental Analysis Manual (EAM). (2022). U.S. Food and Drug Administration. https://www.fda.gov/food/laboratory-methods-food/elemental-analysis-manual-eam-food-and-related-products
13. Fernández-Turiel, J. L., Llorens, J. F., López-Vera, F., Gómez-Artola, C., Morell, I., & Gimeno, D. (2000). Strategy for water analysis using ICP-MS. Fresenius’ Journal of Analytical Chemistry, 368(6), 601–606. https://doi.org/10.1007/s002160000552
14. Froger, C., Quantin, C., Bordier, L., Monvoisin, G., Evrard, O., & Ayrault, S. (2020). Quantification of spatial and temporal variations in trace element fluxes originating from urban areas at the catchment scale. Journal of Soils and Sediments, 20(11), 4055–4069. https://doi.org/10.1007/s11368-020-02766-1
15. Garbarino, J.R., Kanagy, L.K., and Cree, M.E., (2006). Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma–mass spectrometry: U.S. Geological Survey Techniques and Methods, book 5, sec. B, chap. 1, 88 p.
16. Garnier, J., Tonha, M., Araujo, D. F., Landrot, G., Cunha, B., Machado, W., Resongles, E., Freydier, R., Seyler, P., & Ratié, G. (2024). Detangling past and modern zinc anthropogenic source contributions in an urbanized coastal river by combining elemental, isotope and speciation approaches. Journal of Hazardous Materials, 480, 135714. https://doi.org/10.1016/j.jhazmat.2024.135714
17. Le Pape, P., Ayrault, S., & Quantin, C. (2012). Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France). Journal of Hydrology, 472, 99-110.https://doi.org/10.1016/j.jhydrol.2012.09.042
18. Li, Y., Bi, Y., Mi, W., Xie, S., & Ji, L. (2021). Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. Journal of Hazardous Materials, 406, 124337. https://doi.org/10.1016/j.jhazmat.2020.124337
19. Martinez-Morata, I., Bostick, B. C., Conroy-Ben, O., Duncan, D. T., Jones, M. R., Spaur, M., Patterson, K. P., Prins, S. J., Navas-Acien, A., & Nigra, A. E. (2022). Nationwide geospatial analysis of county racial and ethnic composition and public drinking water arsenic and uranium. Nature Communications, 13(1), 7461. https://doi.org/10.1038/s41467-022-35185-6
20. Martinez, R. B. (2023, September 5). Hill Country, Texas: Texas roadtrips. Hill Country, Texas | Texas Roadtrips. https://www.traveltexas.com/articles/post/driving-the-hill-country/
21. McCurdy, E. (n.d.). ICP–MS-MS delivers accurate trace-level arsenic analysis in complex samples. Spectroscopy Online. https://www.spectroscopyonline.com/view/icp-ms-ms-delivers-accurate-trace-level-arsenic-analysis-complex-samples
22. Nazarpour, A., Watts, M. J., Madhani, A., & Elahi, S. (2019). Source, Spatial Distribution and Pollution Assessment of Pb, Zn, Cu, and Pb, Isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Scientific Reports, 9(1), 5349. https://doi.org/10.1038/s41598-019-41787-w
23. Nigra, A. E., Chen, Q., Chillrud, S. N., Wang, L., Harvey, D., Mailloux, B., Factor-Litvak, P., & Navas-Acien, A. (2020). Inequalities in public water arsenic concentrations in counties and community water systems across the United States, 2006–2011. Environmental Health Perspectives, 128(12). https://doi.org/10.1289/ehp7313
24. Petit, J. C. J., Schäfer, J., Coynel, A., Blanc, G., Chiffoleau, J.-F., Auger, D., Bossy, C., Derriennic, H., Mikolaczyk, M., Dutruch, L., & Mattielli, N. (2015). The estuarine geochemical reactivity of Zn isotopes and its relevance for the biomonitoring of anthropogenic Zn and Cd contaminations from metallurgical activities: Example of the Gironde fluvial-estuarine system, France. Geochimica et Cosmochimica Acta, 170, 108–125. https://doi.org/10.1016/j.gca.2015.08.004
25. Rosca, C., König, S., Pons, M.-L., & Schoenberg, R. (2021). Improved protocols for Zn purification and MC-ICP-MS analyses enable determination of small-scale Zn isotope variations. Chemical Geology, 586, 120440. https://doi.org/10.1016/j.chemgeo.2021.120440
26. Rosca, C., Schoenberg, R., Tomlinson, E. L., & Kamber, B. S. (2019). Combined zinc-lead isotope and trace-metal assessment of recent atmospheric pollution sources recorded in Irish peatlands. Science of The Total Environment, 658, 234–249. https://doi.org/10.1016/j.scitotenv.2018.12.049
27. Thapalia, A., Borrok, D. M., Van Metre, P. C., Musgrove, M., & Landa, E. R. (2010). Zn and Cu Isotopes as Tracers of Anthropogenic Contamination in a Sediment Core from an Urban Lake. Environmental Science & Technology, 44(5), 1544–1550. https://doi.org/10.1021/es902933y
28. Tonhá, M. S., Araújo, D. F., Araújo, R., Cunha, B. C. A., Machado, W., Portela, J. F., Pr Souza, J., Carvalho, H. K., Dantas, E. L., Roig, H. L., Seyler, P., & Garnier, J. (2021). Trace metal dynamics in an industrialized Brazilian river: A combined application of Zn isotopes, geochemical partitioning, and multivariate statistics. Journal of Environmental Sciences, 101, 313–325. https://doi.org/10.1016/j.jes.2020.08.027
29. Tu, Y.-J., You, C.-F., & Kuo, T.-Y. (2020). Source identification of Zn in Erren River, Taiwan: An application of Zn isotopes. Chemosphere, 248, 126044. https://doi.org/10.1016/j.chemosphere.2020.126044