References

  • Beauchamp, C. R., Camara, J. E., Carney, J., Choquette, S. J., Cole, K. D., DeRose, P. C., … & Windover, D. (2020). Metrological tools for the reference materials and reference instruments of the NIST material measurement laboratory. NIST Special Publication260, 136.
  • Gelencsér, O., Árvai, C., Mika, L. T., Breitner, D., LeClair, D., Szabó, C., … & Szabó-Krausz, Z. (2023). Effect of hydrogen on calcite reactivity in sandstone reservoirs: Experimental results compared to geochemical modeling predictions. Journal of Energy Storage61, 106737.
  • Hassanpouryouzband, A., Adie, K., Cowen, T., Thaysen, E. M., Heinemann, N., Butler, I. B., … & Edlmann, K. (2022). Geological hydrogen storage: geochemical reactivity of hydrogen with sandstone reservoirs. ACS Energy Letters, 7(7), 2203-2210.
  • Jreije, I., Hadioui, M., & Wilkinson, K. J. (2022). Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS. Talanta238, 123060.
  • Karpov, Y. A., & Orlova, V. A. (2008). Modern methods of autoclave sample preparation in chemical analysis of substances and materials. Inorganic Materials44, 1501-1508.
  • Kaszuba, J., Yardley, B., & Andreani, M. (2013). Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Reviews in Mineralogy and Geochemistry77(1), 153-188.
  • Kawabata, K., Kishi, Y., & Thomas, R. (2003). The benefits of dynamic reaction cell ICP-MS technology to determine ultratrace metal contamination levels in high-purity phosphoric and sulfuric acid. SPECTROSCOPY-SPRINGFIELD THEN EUGENE THEN DULUTH-18(1), 16-31.
  • Kuznetsova, O. V., Burmii, Z. P., Orlova, T. V., Sevastyanov, V. S., & Timerbaev, A. R. (2019). Quantification of the diagenesis-designating metals in sediments by ICP-MS: Comparison of different sample preparation methods. Talanta200, 468-471.
  • Lu, J., Darvari, R., Nicot, J. P., Mickler, P., & Hosseini, S. A. (2017). Geochemical impact of injection of Eagle Ford brine on Hosston sandstone formation—Observations of autoclave water–rock interaction experiments. Applied Geochemistry84, 26-40.
  • May, T. W., & Wiedmeyer, R. H. (1998). A table of polyatomic interferences in ICP-MS. ATOMIC SPECTROSCOPY-NORWALK CONNECTICUT-19, 150-155.
  • Rowan, J. T., & Houk, R. S. (1989). Attenuation of polyatomic ion interferences in inductively coupled plasma mass spectrometry by gas-phase collisions. Applied Spectroscopy43(6), 976-980.
  • Singh, S. A., Vishwanath, K., & Madras, G. (2017). Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion. ACS applied materials & interfaces9(23), 19380-19388.
  • Truche, L., Jodin-Caumon, M. C., Lerouge, C., Berger, G., Mosser-Ruck, R., Giffaut, E., & Michau, N. (2013). Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250 C and 30 bar. Chemical Geology351, 217-228.
  • Wu, Z., Yang, H., Wu, L., Hu, C., Gao, W., Huang, L., & Li, L. (2021). Research progress in preparation of metal powders by pressurized hydrogen reduction. International Journal of Hydrogen Energy46(71), 35102-35120.
  • Wysocka, I. (2021). Determination of rare earth elements concentrations in natural waters–A review of ICP-MS measurement approaches. Talanta221, 121636.
  • Yekta, A. E., Pichavant, M., & Audigane, P. (2018). Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage. Applied geochemistry95, 182-194