References


Christopher M. Fisher, Christopher R.M. McFarlane, John M. Hanchar, Mark D. Schmitz, Paul J. Sylvester, Rebecca Lam, Henry P. Longerich, Sm–Nd isotope systematics by laser ablation-multicollector-inductively coupled plasma mass spectrometry: Methods and potential natural and synthetic reference materials, Chemical Geology, Volume 284, Issues 1–2, 2011, Pages 1-20, ISSN 0009-2541, https://doi.org/10.1016/j.chemgeo.2011.01.012

Erdmann, S., Martel, C., Pichavant, M. et al. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib Mineral Petrol 167, 1016 (2014). https://doi.org/10.1007/s00410-014-1016-4.

Franziska Keller, Maren Wanke, Nico Kueter, Marcel Guillong, Olivier Bachmann, An Amphibole Perspective on the Recent Magmatic Evolution of Mount St. Helens, Journal of Petrology, Volume 65, Issue 1, January 2024, egad093, https://doi.org/10.1093/petrology/egad093.

Hua Huang, Brian J. Fryer, Ali Polat, Yuanming Pan, Amphibole, plagioclase and clinopyroxene geochemistry of the Archean Fiskenæsset Complex at Majorqap qâva, southwestern Greenland: Implications for Archean petrogenetic and geodynamic processes, Precambrian Research, Volume 247, 2014, Pages 64-91, ISSN 0301-9268, https://doi.org/10.1016/j.precamres.2014.03.021.

M.F. Torres García, M. Calderón, C. Ramírez de Arellano, F. Hervé, J. Opitz, T. Theye, C.M. Fanning, R.J. Pankhurst, M. González-Guillot, F. Fuentes, M. Babinski, Trace element composition of amphibole and petrogenesis of hornblendites and plutonic suites of Cretaceous magmatic arcs developed in the Fuegian Andes, southernmost South America, Lithos, Volumes 372–373, 2020, 105656, ISSN 0024-4937, https://doi.org/10.1016/j.lithos.2020.105656.

McDonough W. F. and Sun S.- s. (1995) “The composition of the Earth” Chemical Geology 120, 223–253.

Michael Marks, Ralf Halama, Thomas Wenzel, Gregor Markl, Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace-element partitioning, Chemical Geology, Volume 211, Issues 3–4, 2004, Pages 185-215, ISSN 0009-2541, https://doi.org/10.1016/j.chemgeo.2004.06.032.

P. Wee, Perkin Elmer, 2004, G. Keating. 

Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry. doi: 10.1039/cljal10172b.

T.R. Hampel, M.C. Rowe, A. Kent, C.R. Thornber, Amphibole Trace Elements as Indicators of Magmatic Processes at Mount St. Helens, American Geophysical Union, December 2011, abstract id. V53B-2608, https://ui.adsabs.harvard.edu/abs/2011AGUFM.V53B2608H/abstract.

Ye Chenyang , Feng Yonggang , Lei Ruxiong , Yang Gaoxue, Compositional Variation of Amphiboles During Magma Mixing: A Case Study of Huangyangshan A-Type Granite in Kalamaili Metallogenic Belt, East Junggar, China, Frontiers in Earth Science, 9, 2021, https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2021.650014.