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Kohn anomaly and elastic softening in body-centered cubic molybdenum at high pressure
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Transition metals in body-centered cubic (bcc) structures under compression can display several novel
physical properties because of their complex electronic structures and electron-phonon interactions. Here, we
used inelastic x-ray scattering experiments in a diamond-anvil cell up to ∼45 GPa and density-functional
theory calculations up to 210 GPa to investigate the phonon dispersions, and electronic and elastic properties
of single-crystal molybdenum (Mo). Our results show a pressure-induced Kohn anomaly at q ∼ 0.5 along the
[ξ00] direction in the longitudinal acoustic mode at ∼45 GPa; this anomaly is triggered by the pressure-enhanced
Fermi-surface nesting effect. Theoretical calculations show that electron redistributions in the s-to-d orbitals of
bcc-Mo contribute to the shear modulus anomaly at ∼50 GPa. In contrast, the Young’s modulus anomaly in
bcc-Mo at ∼210 GPa results from a Lifshitz-type electronic topological transition. Our results shed light on
the complex electronic behaviors that are associated with macroscopic elastic properties in typical bcc d-block
transition metals under compression.
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I. INTRODUCTION

Physical properties of d-block transition metals are of
great interest to leading-edge research of materials science,
condensed-matter physics, and planetary science [1–4]. It has
been reported that a number of intriguing properties (such as
superconductivity, electronic and structural phase transitions,
phonon anomalies, and elastic softening) occur in d-block
transition metals when they are under pressure [5–9]. Many
of those exotic properties are related to the d-band occupancy
according to the cohesive energy mechanism in one-electron
theory [10]. For example, elastic constants of cubic transition
metals vary with an increase in their atomic numbers; this can
be understood in terms of the s-to-d electronic transition at
ambient conditions (e.g., Ta, W, and Pt [11]). The bulk modu-
lus of lanthanum displays an anomalous stiffening, and this is
typically caused by the termination of increased d-band fill-
ing at elevated pressures [12,13]. Recent advanced theoretical
calculations and experimental studies revealed novel physical
mechanisms that can contribute to elastic and mechanical
anomalies in d-block transition metals with body-centered cu-
bic (bcc) crystal structure when they are under high pressure.
These anomalies include Fermi surface nesting, band Jahn-
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Teller distortion, and electronic topological transitions [9,14–
16]. Particular examples include electronic topological transi-
tions (ETT) of bcc-Ta and bcc-Nb at high pressures; these are
associated with their elastic moduli anomalies [17,18]. In a
nutshell, the electron-phonon coupling effect, ETT, and band
Jahn-Teller distortions are mostly related to the modifications
and interactions of d orbitals in d-block transition metals that
are under compression. Therefore, it is important to investi-
gate interactions between electronic structures (especially the
d-orbital electronic structures) and lattice dynamics of transi-
tion metals to better understand their physical manifestations
in elastic, mechanical, and transport properties when under
compression.

Mo is a typical bcc transition metal. Previous investigations
regarding the lattice dynamics of Mo at high pressure revealed
a series of physical anomalies, such as anomalous changes in
the H point [19] and L[ξξξ ] branch in the vicinity of ξ = 2/3
[20–22]. In particular, Farber et al. used high-resolution in-
elastic x-ray scattering in a diamond-anvil cell and theoretical
calculations to study the H-point phonon anomaly. Their ex-
perimental phonon-dispersion curves along the �-H direction
at 17 GPa did not show a phonon anomaly beyond the H
point. Along with theoretical calculations, the curves indicate
that the H-point anomaly in Mo is a result of strong electron-
electron coupling. This explanation, however, is at odds with
previous reports for other bcc crystal structures, such as V,
Ta, and Nb, which are adjacent to Mo on the periodic table.
Phonon dispersions of V, Ta, and Nb at the H point do not
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show any anomalies under ambient or high-pressure condi-
tions [14,18,23], but their phonon anomalies occur between
the � point and H point along the �-H direction at ambient
or high-pressure conditions. Therefore, further investigations
regarding the phonon dispersions and possible anomalies of
single-crystal bcc-Mo under high pressure can aid our under-
standing of the lattice dynamics in d-block bcc metals.

The elasticity and mechanical properties of bcc-Mo under
high pressure are also of significant interest in condensed-
matter physics and can be linked to the aforementioned
electronic structures. Mo is often used as a refractory material
because it has high thermal stability and as a pressure calibrant
because it has well-measured elasticity [19,24–26]. However,
shear modulus softening of Mo has been observed at ∼210
GPa along the Hugoniot in shock compression experiments.
Interestingly, the underlying mechanism behind the anomaly
remains debated [27–31]. Hixson et al. [27] proposed that
the shear softening anomaly at ∼210 GPa results from a
phase transition from bcc to hexagonal closed packed (hcp).
However, more recent shock experiments did not find statis-
tically significant evidence to support the bcc-to-hcp phase
transition in the range of this pressure [28,29,32]. In situ
x-ray diffraction experiments under laser shock compression
were conducted and further confirmed that bcc-Mo remains
stable before shock-induced melting [33]. Further studies on
the elastic properties of single-crystal Mo can also be used
to elucidate its electronic and phononic properties under high
pressures.

In this work, high-energy resolution inelastic x-ray scat-
tering (HERIX) spectrometer along the high-symmetric �-H
[ξ00] and �-N [ξξ0] directions was used to measure acoustic
phonon dispersions of single-crystal Mo at hydrostatic pres-
sures up to ∼45 GPa and at room temperature. We also used
density-functional theory (DFT) to compute phonon disper-
sions of Mo, and the results match the experimental results
well. Kohn anomalies in the longitudinal branch along the
�-H direction were observed at ∼45 GPa, and their magni-
tudes were enhanced with an increase in pressure. Our DFT
calculations show that the Kohn anomalies are related to the
Fermi-surface nesting and the electron-phonon coupling effect
at high pressure. We also observed anomalies of elastic con-
stants caused by the s-to-dxz/dyz electronic transition about 50
GPa, where the elastic anomalies at approximately 210 GPa
originate from the electronic topological transition.

II. METHODS

Molybdenum single crystals, which had an initial size of
∼500 μm long and ∼150 μm thick in the (100) orientation,
were purchased from Princeton Scientific Corporation, USA.
A few pieces of smaller crystals, which were 40 × 50 μm2

in size and 15 μm thick, were cut from the original large
crystals using a focused ion beam (FIB) (FEI VERSA 3D
type); cuts were made at the Center for High Pressure Science
and Technology Advanced Research (HPSTAR), Shanghai
[24]. A gallium ion beam with a current of 15 nA was used
for the FIB cutting to reduce potential damage to the quality
of the single crystal. Before HERIX experiments, the quality
and lattice parameters of the single crystal before and after
loading into diamond-anvil cells (DACs) were checked using

FIG. 1. High-energy resolution inelastic x-ray scattering experi-
ments in single-crystal Mo at high pressure. (a) Microphotograph of
a Mo crystal loaded with He in a DAC at 45.0(0.5) GPa. The sample
was ∼40 × 50 μm long and ∼15 μm thick. The culet size of the
diamond anvils was 300 μm. (b) Representative longitudinal acoustic
(LA) spectra of Mo at 45.0(0.5) GPa measured in the (200) Brillouin
zone along the [ξ00] direction from q = 0.1 to q = 1.0. Error bars
(vertical ticks) were estimated from counting statistics. Solid lines
were fit to experimental data (open circles) using a Gaussian func-
tion. An additional Gaussian function was used for the elastic line
centered around 0 meV.

x-ray diffraction (XRD) at the 13ID-D station, GeoSoilEnvi-
roConsortium for Advanced Radiation Sources (GSECARS)
of the Advanced Photon Source (APS), Argonne National
Laboratory. Analysis of the measured XRD patterns of the
FIB-cut crystals showed that the crystals displayed sharp and
circular diffraction spots with a typical full width at half
maximum (FWHM) of 0.09 ° [18]. A crystal platelet in the
(100) orientation was loaded into a short symmetric DAC
with an x-ray opening of 90 ° (2θ ). The DAC was equipped
with a pair of diamonds that had 250-μm culets [Fig. 1(a)].
A rhenium gasket that had an initial thickness of 250 μm
was preindented to a depth of approximately 30 μm, and a
hole with a diameter of 160 μm was then drilled into the
gasket and used as a sample chamber. Helium was used as
a pressure medium to provide a quasihydrostatic condition for
the crystal in the sample chamber. A ruby sphere was loaded
near the crystal and served as a pressure calibrant according
to the ruby fluorescence pressure scale [34]. The pressure of
the sample chamber was double checked using the equation
of state of the Mo sample on the basis of the analysis of in situ
x-ray diffraction patterns [35]. More experimental details can
be found elsewhere [18].

Experimental measurements of high-pressure phonon dis-
persions of Mo were carried out using the HERIX instruments
at Sector 30 of the APS [36–39]. An incident x-ray source
with an energy of 23.724 keV and an energy resolution of 1.4
meV was focused down to a beam size of 35 × 15 μm2 on
the sample. An online x-ray diffraction setup at Sector 30 of
the APS was used to orient and align Mo crystals with (110),
(200), and (220) diffraction spots. A spherically bent silicon
crystal analyzer of the (12 12 12) reflection was used in the
system to collect the longitudinal and transverse modes along
the high-symmetric [ξ00] and [ξξ0] directions [40]. A typical
collection time of about 1 to 2 h was used to detect a set of the
phonon signals. For each scan in constant-q scans, HERIX
energy spectra were measured at 22.0(0.5) GPa and 45.0(0.5)
GPa over the energy range of ±40 meV with a step size of 0.25
or 0.5 meV. Representative spectra in the longitudinal acoustic
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FIG. 2. Phonon dispersions in bcc single-crystal Mo at high pressure along the (a) �-H and (b) �-N directions. Blue and red solid circles
represent our experimental data at 22 and 45 GPa, respectively, while black and green solid circles represent results at ambient condition and at
17 GPa from previous inelastic neutron and x-ray scattering measurements [19,56]. Errors for data are smaller than the circle size and are not
plotted for clarity. Black, blue, and red lines represent DFT calculations of phonon dispersions at 0, 22, and 45 GPa, respectively. Longitudinal
dispersions along the �-N direction in experiments at 45 GPa were not completed because of an anvil failure. Dark-green and black arrows
indicate the Kohn anomalies at q ∼ 0.5 and near the H point, respectively.

mode in the Brillouin zone (200) along the [ξ00] direction are
shown in Fig. 1(b). The spectra were fitted using a Gaussian
function with the DAVE2 Program to extract energy values and
FWHMs of the phonons [41].

First-principles calculations were made using the Vienna
Ab initio Simulation Package (VASP) [42–44]. A kinetic
energy cutoff of 350 eV and a 30 × 30 × 30 �-centered k-
point mesh was used for primitive cell simulations. Phonon
dispersions were calculated using the PHONOPY code [45]
with 6 × 6 × 6 supercells, and elastic constants were calcu-
lated using density-functional perturbation theory (DFPT).
The projector augmented-wave (PAW) approximation and
local density approximation (LDA) were used to describe
the atomic electronic structures [46,47]. LOBSTER code was
used to calculate the electron occupancy of each orbital [48].
Three-dimensional Fermi-surface structures were simulated
using the VASP and WANNIER90 codes [49] and were visualized
using the XCRYSDEN package [50]. Electron-phonon interac-
tion properties were calculated using DFPT as implemented
in the ABINIT code with a PAW pseudopotential within LDA
for the exchange-correlation function [51,52]. A �-centered
k grid of 36 × 36 × 36 and a 12 × 12 × 12 q-point mesh, a
Gaussian smearing of 0.01 Ha, and a cutoff energy of 25 Ha
were used for the electron-phonon coupling coefficient and
Fermi-surface nesting function calculations. Atomic orbital
projected 3D Fermi surfaces were calculated using the QUAN-
TUM ESPRESSO package [53] and then visualized using the
FERMISURFER code [54]. For the PAW pseudopotential within
LDA for the exchange-correlation function, a plane-wave cut-
off of 50 Ry and a 30 × 30 × 30 �-centered k-point mesh was
used to describe the electronic structures. The convergence of
these calculations is carefully checked to balance the accu-
racy and computational cost (see Fig. S1 in the Supplemental
Material [55]).

III. RESULTS AND DISCUSSION

Phonon dispersions of single-crystal Mo along the high-
symmetry directions �-H and �-N at high pressure are shown
in Fig. 2; previous data at gathered at ambient conditions using
inelastic neutron scattering measurement [56] as well as our
DFT calculations (which agree with the experimental results)

are also shown. Overall, the measured phonon energies in-
crease at elevated pressures. A Kohn anomaly near the H point
was observed at each pressure, and this is consistent with the
previous report [19] (Fig. 2). Interestingly, in addition to the
H-point phonon anomaly, we found another Kohn anomaly
of Mo at q ∼ 0.5 along the [ξ00] direction in the LA mode;
this anomaly starts to show a kink at ∼45 GPa, which is the
highest pressure we reached in our measurements.

We performed first-principles calculations of phonon dis-
persions at pressures up to 210 GPa to investigate the Kohn
anomaly at pressures beyond the current experiments, and
the results are shown in Fig. 3(a). At higher pressures (such
as 210 GPa), the kink at q ∼ 0.5 along the [ξ00] direction
of the LA mode becomes very distinct, and this confirms
the pressure-enhanced Kohn anomaly. In contrast, the Kohn
anomaly near the H point becomes weaker with an increase
in the pressure. To show the strength of the Kohn anomaly,
we further calculated the phonon-frequency ratio, which is
defined as the phonon frequency at the H point (q = 1.0)
divided by the maximum value along �-H (at q∼0.65). As
shown in Table I, this ratio gradually increased with com-
pression, and this indicates that the Kohn anomaly near the
H point gradually collapsed with an increase in the pressure.
The continuous weakening of the H-point Kohn anomaly at
high pressure is consistent with previous observations [19],
in which a significantly decreased H-point anomaly was ob-
served in both high-resolution inelastic x-ray scattering (IXS)
experiments and in DFT calculations.

The q-dependent electron-phonon coupling (EPC) coeffi-
cient and the Fermi-surface nesting function were calculated
to illustrate the nature of the observed Kohn anomalies in
compressed Mo; the results are shown in Figs. 3(b) and 3(c).
Results of the first-principles calculations show that the mag-
nitude of the EPC coefficient at the H point is as high as
∼0.7 at ambient pressure. In contrast, it continuously de-
creased to ∼0.5 when the pressure was increased to ∼100 GPa
[Fig. 3(b)], and this confirms a previous report [18]. However,
the anomaly at q ∼ 0.5 along the �-H direction did not origi-
nate from the EPC because the EPC coefficient did not change
significantly upon compression. Instead, the Fermi-surface
nesting function increased obviously at q ∼ 0.5 [Fig. 3(c)].
Therefore, the Kohn anomaly of Mo at q ∼ 0.5 under high
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FIG. 3. DFT results of phonon dispersions, electron-phonon cou-
pling, Fermi surface nesting, and 3D Fermi surfaces in bcc Mo under
pressure. (a) Calculated phonon dispersions at pressures of 0–210
GPa. The black arrow indicates the Kohn anomalies of bcc Mo at
q ∼ 0.5 along the �-H direction. Electron-phonon coupling coeffi-
cients (λq,v) (b) and Fermi-surface nesting functions [χ (q)] (c) in bcc
Mo along the �-H direction at high pressures of 0–100 GPa. Three-
dimensional Fermi surfaces of bcc Mo are shown at (d) 0 GPa and
(e) 210 GPa. Red arrows indicate the Fermi-surface nesting vectors
along the �-H direction. The 3D Fermi surface structures simulated
with VASP and WANNIER90 were visualized using XCRYSDEN [50].

pressure was most likely induced by the pressure-enhanced
Fermi surface nesting, which has a strong electronic screening
effect on phonon dispersions [57]. Three-dimensional Fermi
surfaces at ambient and 210 GPa were also calculated, and
the results are shown in Figs. 3(d) and 3(e), respectively. The
topology of the Fermi surfaces shows that two areas the Fermi
surfaces are nearly flat and are enlarged under compression
[as indicated by the red arrows in Fig. 3(e)]. This indicates
that there is an enhanced Fermi-surface nesting effect at high
pressures. These results are similar to the observation of a
Kohn anomaly in bcc-Ta at q∼0.7 in the same direction, even
at 0 GPa [18,58]; in this case, the Kohn anomaly is also
enhanced by the Fermi-surface nesting effect.

The elastic constants of the cubic single-crystal Mo can be
extracted from the velocity of phonon modes that travel along
the high-symmetry directions [59]. For example, C11 can be

derived using the following equation:

vL =
√

C11

ρ
, (1)

where vL is the longitudinal phonon velocity along the [100]
direction near the � point, C11 is the elastic constant along
the same direction, and ρ is the material density. Linear fitting
to the phonon dispersion in Q-E (momentum-energy) mea-
surements near the � point (Table II) were used to extract
full elastic constants (Ci j) of the Mo crystal from HERIX
experiments that were conducted about ambient, 22 GPa,
and 45 GPa. We also calculated the elastic moduli using
first-principles calculations up to 240 GPa. Except for the
calculated C11, which was systematically higher by ∼17%
than the measured data [26], the experimental and calculated
results are in good agreement with each other. The overesti-
mation of C11 may occur because LDA calculations overall
underestimate the lattice parameters of Mo at high pressures
(Table II) [60].

We determined the elastic moduli of bcc-Mo under com-
pression using the measured and calculated elastic constants
according to Voigt’s formulas [62], which are as follows:

B = C11 + 2C12

3
, (2)

G = C44 − 1

5
(2C44 + C12 − C11), (3)

ν = C12 − 1
5 (2C44 + C12 − C11)

2
[
C12 + C44 − 2

5 (2C44 + C12 − C11)
] , (4)

E = 2(1 + ν)G, (5)

where B is the crystal bulk modulus, G is the shear mod-
ulus, ν is Poisson’s ratio, and E is Young’s modulus. At
high pressures, the DFT results are expected to be higher
than the experimental results due to the following reasons
[28,63,64] (Fig. 4): (a) the shear modulus and Young’s mod-
ulus of Mo were calculated at 0 K, whereas the experiment
results from literatures were conducted at high temperature
(under shock compression). The application of high tempera-
ture usually softens the elastic modulus due to the expansion
of the volume and weakening the bond-bond interactions.
(b) Our DFT calculations were conducted using LDA, which
usually underestimates the lattice parameters, so the atom-
atom interactions become stronger and the elastic constants
are overestimated. Figure 4 shows two anomalies of the shear
modulus and Young’s modulus; these are present in both the
experimental results and DFT simulations at approximately
50 and 210 GPa (we should note that the DFT-calculated
elastic anomaly located around 210 GPa may not occur at high
pressure-temperature [55,65]). There is no structural phase

TABLE I. DFT-calculated volume compression and frequency shifts ratio at the H point.

Pressure (GPa) 0 22 45 100 210

Volume compression [(V -V0)/V0] a 0% 6.32% 11.25% 19.55% 29.65%
Frequency ratio(εH/εq∼0.65) 66.90% 71.33% 74.87% 79.88% 85.65%

aV0 is the volume of Mo at ambient conditions. εH/εq ˜0.65 is the phonon frequency at the H (q = 1.0) or q ∼ 0.65 point along the �-H direction.
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TABLE II. IXS-measured and DFT-calculated elastic constants of Mo at high pressure (GPa).

Pressures (GPa) Method Lattice parameters (Å) C11 C12 C44

0 Expt.a 3.147 465.0(0.6) 163.0(2.0) 109.0(0.9)
DFT 3.113 512.8 180.8 104.2

22(0.5) Expt. 3.073(1) 534(9) 203(11) 145(4)
DFT 3.046 621.6 228.4 135.3

45(0.8) Expt. 3.012(1) 604(5) 250(16) 166(3)
DFT 2.992 710.9 281.0 155.7

100 DFT 2.895 862.0 399.4 175.5
200 DFT 2.778 1140.2 598.8 262.5
240 DFT 2.743 1253.0 666.9 307.4

aReference [61].

transition in bcc-Mo at high pressures up to at least 420 GPa
(0 K), according to previous DFT-calculated results [27,66].
Besides, the solid-to-liquid phase transition occurs at pres-

FIG. 4. Elastic moduli of solid Mo at high pressures. Shear mod-
ulus (a) and Young’s modulus (b) of Mo when under high pressure.
Solid red circles represent our experimental results, and the solid red
line is for our DFT calculations. The hollow circles represent the
results reported from Ref. [64] at high pressures and room tempera-
tures. Diamonds (Ref. [63]) and squares (Ref. [28]) represent results
from shock-wave experiments.

sures above ∼240 GPa under shock compression [28].
Therefore, the softening of the two elastic moduli that occur
around 50 and 210 GPa may not be attributed to any known
structural phase transitions in Mo.

We first investigated the number of s and d orbital electrons
in Mo at high pressures to understand the physical mecha-
nisms of the aforementioned elastic modulus anomalies [48].
Our results show that the number of s-orbital electrons in
Mo decreased, whereas the number of d orbital electrons
increased with an increase in pressure [Figs. 5(a)–5(c)], and
this indicates a pressure-induced s-to-d electronic transition
[67]. The dxy and dyz orbitals, which are closer to the Fermi
surface, display anomalies more clearly at around 50 GPa
[Fig. 5(b)] because of crystal-field splitting of the d orbitals
in the bcc structure. Therefore, these elastic moduli anomalies
are likely related to the d-band filling mechanism [12,13].

Canonical band theory with the atomic-sphere approxima-
tion can be used to understand the relationship between the
elastic moduli and the s-to-d electronic transition [12]. It can
be described as [12,68,69]

3BV ∼ 3B0V +
[(

δε

δ ln S

)
s

−
(

δε

δ ln S

)
d

](
dns

d ln V

)
, (6)

where V is the volume, S is the Wigner-Seitz radius
( 4

3πS3 = V ), dns is the change in the number of the s or-
bital electrons, ε is the band energy, and B0 (positive) is
the bulk modulus in the absence of an electronic transition
(dns = 0). The second term on the right-hand side of Eq. (6),
[( δε

δ ln S )
s
− ( δε

δ ln S )
d
]( dns

d ln V ), is the softening effect due to the
s-to-d electronic transition. The term δε

δ ln S describes the aver-
age change in one-electron energy per electron and exhibits a
smooth change in volume [12]. The term ns depends on the
finer details of the band structure. When the term dns in Mo
experiences an anomaly around 50 GPa, the bulk modulus (B)
displays an anomaly at the same pressure [12]. The bulk mod-
ulus (B), longitudinal sound velocity (CL), and shear modulus
(G) are then related by the following equation [28]:

B = ρC2
L − 4

3 G, (7)

where ρ is the material density. The s-to-d transition rate in
the primary stage is high, but it diminishes gradually when
the pressure is higher than 50 GPa [Figs. 5(a) and 5(b)].
Thus, the shear modulus and the longitudinal sound velocity
both show an anomaly at ∼50 GPa [27,32,64]. Therefore, the
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FIG. 5. Number of electrons and 3D Fermi surfaces of Mo calculated using VASP at high pressure. Number of electrons of s orbital (a) and
d orbital (b), (c) as a function of pressure. Three-dimensional Fermi surface of Mo at 0 (d), 110 (e), and 210 (f) GPa. Fermi surfaces in panel
(f) show an occurrence of an electronic topological transition at ∼210 GPa (blue areas). Three-dimensional Fermi surfaces were visualized
using the XCRYSDEN package [50].

elastic moduli anomaly of bcc-Mo, which is around 50 GPa,
originates from the s-to-d electronic transition.

We further calculated the 3D Fermi surface structure of
Mo up to 210 GPa (another band that crosses into the Fermi
level), which has a six-sided cubiclike structure elongated
along the �-H direction [Figs. 5(d)–5(f)], to better understand
the mechanism of the elastic anomaly at around 210 GPa
indicated by the previous shock experiments as well as our
DFT calculations (Fig. 4). The topology of the Fermi surfaces
exhibits no change up to 110 GPa. However, the corners of the
cubiclike structures become sharper and extrude out gradually
with a further increase in pressure. About 210 GPa, these
features become small cylindrical channels that bridge the
3D Fermi-surface structures in different Brillouin zones, and
this eventually leads to a Lifshitz-type electronic topological
transition.

The ETT-induced elastic anomalies can be described by a
previously reported model (Ref. [26]). For a critical energy
Ec where the Fermi surface undergoes an ETT, the ETT con-
tribution to the elastic constants (Ci j) can be approximately
described by the following equation [26]:

Ci j = 1

V

∂2Eband

∂εi∂ε j
≈ 1

4π2V |E∗|3/2

[
−EF

2
E−(1/2)

]∂2E

∂εi∂ε j
,

(8)
where Eband is the band contribution from ETT to the total
energy, and V is the volume. EF is the energy of the Fermi
level; εi and ε j are the strain components; E∗ is a constant
parameter; E = EF − Ec. When ETT occurs, the difference
between EF and Ec reaches a minimum, and thus, Ci j can
decrease suddenly. Upon increasing the pressure beyond ETT,

EF moves away from Ec; thus, the contribution grows weaker,
and Ci j returns to normal behavior [26,70]. This phenomenon
is similar to other observations in bcc-Ta at ∼100 GPa or bcc-
Nb at ∼350 GPa [17,18,71]. Therefore, the elastic modulus
anomaly in Mo at ∼210 GPa can be associated with the oc-
currence of the ETT [28,72–74]. We note that there exist some
controversies in the interpretations of the high P-T phase dia-
gram and physical properties of Mo in both experimental and
computational results [25,27,32,72,75,76]. Based on our cal-
culations, the ETT occurs at 210 GPa and 0 K [28–30,32,55].
However, since the elastic anomaly located around 210 GPa in
DFT calculations may not occur at high pressure-temperature
[55,65], future theoretical and experimental studies are needed
to help decipher the correlation between the elastic soften-
ing, electron-phonon coupling anomalies, and phase diagram
of Mo at high P-T. ETT mostly correlates to the electronic
structures around the Fermi level. Therefore, we calculated
the d-orbital projected 3D Fermi surfaces, and the results
are shown in Figs. 6(a)–6(e). It is clear that ETT at high
pressures are mostly due to the dyz orbital. Additionally, the
calculated d-orbital projected 3D Fermi-surface structures of
eighth band [Figs. 6(f)–6(j)] indicates that the Fermi-surface
nesting effects under high pressures are mostly related to the
dx2−y2 orbital.

Early in 1959, Kohn first discovered the Kohn anomaly
in metallic systems that is related to the existence of a sharp
Fermi surface [77]. Later, Peierls proved that the lattice struc-
ture of a one-dimensional system with a partially filled band
becomes unstable as a result of a Kohn anomaly that is caused
by a charge-density wave [78]. In 3D metallic systems, Kohn
anomalies are weak and do not always cause any lattice
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FIG. 6. d-Orbital projected 3D Fermi surfaces of bcc Mo at 210 GPa calculated using QUANTUM ESPRESSO. Corresponding d-orbital
projected 3D Fermi surfaces of seventh band (a)–(e) and eighth band (f)–(j). The s- and p orbitals are ignored because they have small
contributions near the Fermi level. d-Orbital projected 3D Fermi surfaces were displayed using FERMISURFER [54].

instabilities [79]. However, because a Kohn anomaly is closely
related to the Fermi-surface nesting and electron-phonon cou-
pling, it is usually described as a superconductivity signal
[80]. As described earlier, a few d-block transition metals
exhibit phonon Kohn anomalies at ambient or under high pres-
sure [81]. In this study, we found a phonon anomaly beyond
the H point along the �-H direction in bcc-Mo. This finding
is similar to that in other typical bcc crystal structures, such as
V, Ta, and Nb which are adjacent to Mo on the periodic table
[81]; however, their phonons at the H point do not show any
anomalies under ambient or high-pressure conditions [19].
Our results here may help advance the understanding of previ-
ous observations that V, Ta, and Nb all have a nonmonotonic
pressure dependence on superconducting transition tempera-
ture, whereas the superconducting transition temperature of
Mo seems to decrease with an increase in pressure [6].

The crystal structures of elemental metals tend to occur
in certain sequences when they are viewed as a function
of atomic number or hydrostatic pressure, and this can be
understood in terms of changes in d-band occupations [10].
However, in 2007, the structural phase transition of V was
observed at 69 GPa; it was proposed that this was driven by the
softening of the C44 trigonal elasticity tensor, which originates
from the combination of Fermi-surface nesting, band Jahn-
Teller distortion, and ETT. This mechanism is contrary to the
s-to-d electronic transition mechanism [15]. Since that study,
many studies have shown that the elastic modulus anomalies
of Nb and Ta at high pressures also have a similar mechanism
that is driven like that of V [16,18,81].

In summary, the phonon Kohn anomaly, band Jahn-Teller
distortions, and ETT are mostly related to the modifications
and interactions of d orbitals in d-block transition metals
under compression. ETT and elastic modulus anomalies are
correlated through dyz orbitals, and the Kohn anomalies at
q ∼ 0.5 mostly correspond to the dx2−y2 orbital. Therefore,
applying pressure as well as chemical and electron doping can

be used to modulate d orbitals, leading to the Kohn anomaly,
ETT, and the elastic moduli anomaly. Our studies are useful
for advancing the understanding of complex properties of
typical bcc transition metals, such as Nb, Cr, and Fe [81,82].

IV. CONCLUSIONS

In conclusion, we used inelastic x-ray scattering experi-
ments and density-functional theory calculations to determine
the lattice vibrations and mechanical properties of bcc Mo at
high pressures. Phonon dispersions along the high-symmetric
directions were measured up to ∼45 GPa at quasihydrostatic
compression and calculated up to 210 GPa using DFT. Kohn
anomalies were observed in acoustic LA mode along the
�-H direction when under high pressure, and these change
with an increase in pressure. The Kohn anomaly near the H
point decreased with an increase in pressure, and this is due
to the pressure-decreased magnitude of the electron-phonon
coupling coefficient. Our calculations indicate that at high
pressures, the Kohn anomaly at q ∼ 0.5 along the longitudinal
acoustic phonon branch is induced by the enhanced Fermi-
surface nesting effect. Further calculated projected 3D Fermi
surfaces indicate that the topological structure of the dx2−y2

orbital contributes to the Kohn anomalies. Elastic modulus
anomalies in Mo were observed in both experiments and
calculations at pressures of ∼50 and 210 GPa. Our first-
principles calculations show that the elastic anomaly at ∼50
GPa is caused by the abrupt change of the transition rate of
s-to-dxz/dyz electronic transition on compression; in contrast,
the elastic anomaly at ∼210 GPa results from the electronic
topological transition and is mostly due to the dyz orbital. Our
study helps to advance the understanding of lattice dynamic
properties of Mo and may shed light on unusual elasticity in
other bcc transition metals under extreme conditions.
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