
1. Introduction
A number of seismological studies have revealed a low-velocity layer with a thickness of ∼20–90 km atop the 
410 km discontinuity (410-LVL) beneath some subduction zones and Precambrian continental platforms (e.g., 
Han et al., 2020; Revenaugh & Sipkin, 1994; Tauzin et al., 2017; Vinnik & Farra, 2007). The low-velocity layers 
are characterized by 1.0%–5.0% and 1.5%–6.5% reductions in compressional-wave and shear-wave velocities 
(VP and VS), respectively (Fan et  al.,  2020). Several genesis mechanisms have been proposed to explain the 
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seismic velocity anomaly of the 410-LVL, including partial melting (Han et al., 2020; Sun et al., 2020; Thomson 
et al., 2016), thermal anomaly (Obayashi et al., 2006; Tang et al., 2014; Vinnik & Farra, 2007), and compo-
sitional heterogeneity (Fan et al., 2020; Lee, 2003). Among these mechanisms, water-induced partial melting 
has often been taken as the plausible cause of the 410-LVL in tectonic settings where water is enriched, such 
as the mantle transition zone with stagnant slabs or the mantle wedge above a subducted slab (Han et al., 2020; 
Tauzin et al., 2017; Wei & Shearer, 2017). Observations of natural hydrous ringwoodite and ice-VII inclusions 
in ultradeep diamonds have provided further evidence that water can be enriched at least in some regions of the 
mantle transition zone (Pearson et al., 2014; Tschauner et al., 2018).

It is widely accepted that water is mainly carried by hydrous minerals in subducted slabs in subduction zones and 
can be transported to the Earth's deep mantle (Ohtani, 2020). Based on phase-equilibrium studies of various slab 
components and geological observations of ancient subduction zones, a number of hydrous minerals have been 
identified as stable at high P–T conditions in subduction zones (e.g., Duan et al., 2018; Ohtani, 2020; Schmidt 
& Poli, 1998). Serpentine is the most abundant hydrous mineral in the ultramafic layer of a subducted slab and 
undergoes a sequence of phase transitions into dense hydrous magnesium silicates (DHMS, including phases 
A, superhydrous B (shy-B), D, E and H) along subducting depths. While the process of the aforementioned 
phase transitions can also release some of the water, the DHMS phases are found to be stable in the subduction 
zone conditions (Iwamori, 2004; Kawamoto et al., 1995; Komabayashi et al., 2004; Litasov & Ohtani, 2003; 
Ohtani, 2020). Therefore, serpentine and DHMS phases can be considered as the major potential water carriers 
in subduction zones, forming a continuous chain of water transport from the Earth's surface to the middle of 
the lower mantle. The DHMS phases have a relatively high-water content and hydrogen bonds in their crystal 
structures in comparison with the nominally anhydrous minerals of the constituent mantle phases. The high-water 
content in the DHMS phases contributes to their unique physical properties including the sound velocities and 
rheology (Mookherjee & Tsuchiya, 2015; Tsuchiya & Tsuchiya, 2008; Wang et al., 2022). Thus, determining 
the elastic properties of the DHMS phases, particularly at the high P‒T conditions of the mantle is important to 
decipher the related seismic anomalies, to evaluate the potential storage sites, distribution and circulation of water 
in subduction zones and to deepen our understanding of the subduction-related geochemical and geodynamic 
processes (Duan et al., 2018; Karato, 2011; Karato et al., 2020; Li et al., 2016; Rosa et al., 2012; Xu et al., 2020). 
Several high-pressure experimental studies on elasticity have been reported for some DHMS phases, and the 
results obtained for phases shy-B and D have been used to explain the seismic anomalies in the mantle transition 
zone and the uppermost part of the lower mantle (Li et al., 2016; Rosa et al., 2012; Xu et al., 2020).

Phase E is a key member of the DHMS family which has been found to be stable at 10–18 GPa and 700°C–1100°C, 
corresponding to the P–T conditions of subducted slabs at the depths of 300–520 km in several experimental phase 
relation studies of the MgO-SiO2-H2O system and H2O-saturated peridotites (Frost & Fei, 1998; Iwamori, 2004; 
Kanzaki, 1991; Komabayashi et al., 2004; Ohtani et al., 2004). In addition, (Fe, Al)-bearing phase E was synthe-
sized under P–T conditions near the normal mantle geotherm in hydrous KLB-1 peridotite, implying that Fe and 
Al incorporation can expand the stability field of phase E to stabilize it under the mantle geotherm (Kawamoto 
et al., 1995; Zhang et al., 2019). Thus far, these phase stability studies have indicated that as much as 50% of 
phase E (an upper bound) could be accommodated in the fully hydrated mantle conditions between the bottom 
of the upper mantle and the topmost transition zone (Ohtani et al., 2004). To decipher the seismological obser-
vations and determine the role of phase E in the water circulation in subduction zones as well as in low-velocity 
seismic anomalies, such as the 410-LVL, high P–T elastic properties of phase E, particularly single-crystal elas-
ticity, are essential. To date, only the equations of state at high pressure and single-crystal elasticity under ambient 
conditions have been reported for phase E.

Phase E has trigonal symmetry and crystallizes in the rhombohedral space group 𝐴𝐴 𝐴𝐴3̄𝑚𝑚 ; its structure consist of 
brucite-like octahedral layers with tilted O-H dipoles that are cross-linked by statistically distributed Si-tetrahedra 
and Mg-octahedra (Kudoh et al., 1993; Tomioka et al., 2016). It has a nonstoichiometric formula depending on 
the hydrogen content and composition, and the Mg-endmember has a general chemical formula of Mg3−0.5xSix-
H6−3xO6, where x varies between 1 and 1.3, with a H2O storage capacity of 11–18 wt% (Purevjav et al., 2020; 
Tomioka et al., 2016). Two previous X-ray diffraction (XRD) studies reported an isothermal bulk modulus of 
KT0 = ∼93 GPa and its pressure derivative of 𝐴𝐴 𝐴𝐴

′

𝑇𝑇 0
  = 5(1) for both iron-free and iron-bearing phase E (Crichton 

& Ross, 2000; Shieh et al., 2000). Recent Brillouin scattering measurements on iron-bearing single-crystal phase 
E (𝐴𝐴 Mg2.12Fe

2+

0.16
Fe3+

0.05
Ni0.01Si1.12O6H2.67 ) under ambient conditions determined an adiabatic bulk modulus of 

KS0 = 95.9(4) GPa and an adiabatic shear modulus of G0 = 59.6(2) GPa (Satta et al., 2019), which are markedly 
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lower than those of the representative constituent minerals in the upper mantle and the mantle transition zone (e.g., 
Fan et al., 2020; Irifune et al., 2008; Katsura et al., 2009; Mao et al., 2015; Wang et al., 2014). The low values of 
the adiabatic bulk and shear moduli for phase E imply that phase E has relatively low compressional-wave and 
shear-wave velocities, which could contribute to a detectable low-velocity seismic signature in hydrated regions 
of the mantle where a significant amount of phase E is present.

In this work, we performed in situ XRD and Brillouin light scattering (BLS) measurements on single-crystal 
phase E up to 24 GPa and 900 K to determine its high P–T equation of state and full elastic tensor. Using the 
obtained single-crystal elasticity data, we have derived the anisotropy factors and aggregate compressional-wave 
and shear-wave velocities of phase E at high P–T conditions relevant to a subducting slab. These results are used 
to model the velocity profiles of a hydrated pyrolite mantle model with ∼13% phase E and to compare with a dry 
pyrolite model and seismic profiles of the regions (the lowest upper mantle and the upper transition zone). Our 
results reveal that the existence of phase E in the mantle can lead to relatively lower Vp and Vs profiles that are 
consistent with the seismic signatures of the 410-LVLs.

2. Experimental Methods
The starting material for the synthesis of single-crystal phase E was a ground mixture of Mg(OH)2 and SiO2 
in a 2:1 M ratio. The mixture was sealed in a Pt capsule of 2 mm in diameter and 2.5 mm in length, which was 
then placed in a 14/8 sample assembly (a 14 mm edge length of the MgO octahedron [pressure medium] and 
8 mm truncations of tungsten carbide anvils). The synthesis was performed at 14 GPa and 1000°C for a duration 
of 14 hr using the Sakura 2500-ton multi-anvil apparatus at the Guangzhou Institute of Geochemistry, Chinese 
Academy of Sciences. The recovered product was composed of well-crystallized transparent single crystals with 
a maximum size of ∼500 μm. Single-crystal XRD analysis confirmed that these single crystals were phase E with 
the 𝐴𝐴 𝐴𝐴3̄𝑚𝑚 symmetry and ambient lattice parameters a = 2.968(1) Å and c = 13.855(2) Å, and V0 = 105.95(3) Å 3. 
The chemical composition of several crystals was analyzed using an electron microprobe at the Guangzhou 
Institute of Geochemistry, Chinese Academy of Sciences, showing that the crystals were chemically homogenous 
with an average composition of 40.5(1) wt% SiO2 and 47.6(1) wt% MgO. With the H2O content being estimated 
from the weight deficiency in the analysis totals, the mineral formula of the synthesized phase E is determined to 
be Mg2.22(1)Si1.27(2)H2.48(1)O6, and the calculated density is 2.949(1) g/cm 3.

High P–T BLS and XRD experiments were conducted on selected phase E crystal platelets at the 13-BMD beam-
line of GSECARS, Advanced Photon Source (APS), Argonne National Laboratory (Sinogeikin et  al.,  2006). 
High P–T conditions were generated using BX90-type externally-heated diamond-anvil cells (EHDAC) with an 
alumina heater coiled with platinum wires (Kantor et al., 2012; Lu et al., 2013; Yang et al., 2014). The culets 
of the diamond anvils were 300 and 500 μm in diameter. The sample, Au pressure calibrant and neon pressure 
medium were loaded into the sample chamber, which was drilled as a hole with a diameter of approximately 2/3 
of the culet size in a pre-indented Re gasket. The temperature of the sample was determined by an R-type thermo-
couple that was attached to the surface of one diamond anvil ∼500 μm away from its culet and covered by ther-
mally conductive ceramics. We performed one complementary series of BLS experiments at high pressure and 
room temperature using a short-symmetry DAC at the Mineral Physics Laboratory, University of Texas at Austin 
(UT Austin), following experimental procedures described in the literature (Fan et al., 2019; Fu et al., 2019; 
Yang et al., 2016; Zhang et al., 2021). To determine the density of phase E for the room-temperature BLS exper-
iments, an additional run of XRD measurements at high pressures and room temperature was also performed at 
the 13-IDD beamline of GSECARS. For the room-temperature BLS experiments, the pressures were determined 
using a ruby pressure calibrant which is internally consistent with the Au pressure calibrant used in high P–T BLS 
experiments (Fei et al., 2007).

During XRD measurements in 13-BMD or 13-IDD beamline of GSECARS, each XRD pattern was obtained for 
phase E crystal platelets and Au pressure calibrants by integrating images collected in the single-crystal wide-scan 
mode or step-scan (1° per step) from −15° to +15°. In both beamlines, the X-ray beam energy was 37 keV 
(0.3344 Å in wavelength) and a stationary Perkin-Elmer image plate was used as the detector. The diffraction 
geometry parameters were calibrated using the LaB6 standard. The obtained diffraction patterns were converted 
into one-dimensional profiles using DIOPTAS (Prescher & Prakapenka,  2015), which were then indexed by 
UNITCELL software to retrieve the lattice parameters at each given P‒T point (Holland & Redfern, 1997). A 
representative integrated XRD pattern of phase E at 22.6 GPa and 300 K is shown in Figure 1a.
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Phase E with the trigonal 𝐴𝐴 𝐴𝐴3̄𝑚𝑚 symmetry has six independent single-crystal elastic stiffness coefficients (Cijs) or 
elastic moduli (Nye, 1985). To obtain reliable data for all six single-crystal elastic moduli, high P–T experiments 
and data analysis must be carefully designed. To start with, we double-polished a number of phase E crystals 
to platelets with a thickness of ∼15 μm. The crystallographic orientations of the platelets were measured by 
single-crystal XRD at the 13-IDD beamline of GSECARS. We then selected three platelets (P1, P2, and P3) 
with the determined crystallographic planes of P1 (0.1 2.9 –4.7), P2 (−0.1 −0.1 6.9) and P3 (−0.8 2.9 −1.9) in 
the Cartesian coordinate system for the Brillouin scattering measurements. The sensitivity tests of these three 
platelets indicated that platelets P1 and P3 were highly sensitive to all six single-crystal elastic moduli and can 
be used to retrieve the full single-crystal elastic tensor of phase E, whereas platelet P2 was used to provide addi-
tional constraints on the derivation of the single-crystal elastic moduli (see Figure 1e and Text S1 in Supporting 
Information S1; Lin et al., 2018). The compressional and shear wave velocities of all three platelets as a function 
of azimuthal angle (i.e., the angle of rotation around an axis normal to the platelet face) were collected in BLS 
measurements under ambient conditions to tightly constrain the ambient single-crystal elastic moduli of phase 
E. For high-pressure BLS experiments at ambient temperature (300 K), we loaded P1 and P2 together in the 
short-symmetry DAC and collected the spectra at UT Austin (Fu et al., 2017, 2019). Only P3 was loaded in 
a BX90-type EHDAC for high P–T BLS and XRD experiments at the 13-BMD beamline of GSECARS. The 
BLS and XRD experimental system at the 13-BMD beamline allowed us to collect both BLS spectra and XRD 
patterns in situ at high P–T to simultaneously determine the acoustic velocities and the density of sample for the 
derivation of the elastic moduli (Sinogeikin et al., 2006). BLS spectra were measured in a symmetric forward 
scattering geometry, in which acoustic velocities (ν) were calculated from the measured Brillouin shifts (ΔυB) 
using the following equation:

𝜈𝜈 =
Δ𝜐𝜐B𝜆𝜆0

2 sin(𝜃𝜃∕2)
 (1)

Figure 1. X-ray diffraction (XRD) and sound velocity measurements of phase E at high pressures. (a) An integrated XRD 
pattern of phase E with indexed diffraction peaks at 22.6 GPa and 300 K. (b–d) Representative Brillouin scattering spectra for 
platelets P1 (0.1 2.9 −4.7) and P2 (−0.1 −0.1 6.9) at 21.3 GPa and 300 K, and P3 (−0.8 2.9 −1.9) at 13.1 GPa and 650 K. P, 
S1, S2, and Ne denote the VP, VS1, and VS2 signals of phase E and the compressional-wave signal of neon, respectively. Black 
open circles are raw data and red lines are fitting results. (e) Sensitivity analyses of Cij to the compressional-wave velocity VP 
and shear-wave velocities VS1 and VS2 of phase E for the three platelets. The highest sensitivity of C44 in each platelet is set to 
100% to normalize the sensitivity values of the other elastic moduli. Platelet P1 and platelet P3 are sensitive to all six elastic 
moduli with relatively high sensitivity values, while platelet P2 is not as sensitive to C33 and C13.
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where the scattering angle (θ) is 48.3° for the BLS system at UT and 50° 
for the BLS system at 13-BMD. The laser wavelength (λ0) is 532  nm for 
both systems. Typical BLS spectra under high P–T conditions are shown in 
Figures 1b–1d.

3. Results and Data Analysis
3.1. Thermal Equation of State of Phase E

XRD patterns of single-crystal phase E and polycrystal Au were collected at 
high pressures up to 22.6 GPa and temperatures of 300, 500, 650, 700, and 
900  K. The collected XRD patterns were converted into one-dimensional 
XRD profiles, which were then indexed and analyzed to derive the unit-cell 
parameters (Table S1 in Supporting Information S1). Pressures were calcu-
lated using the Au pressure scale of Fei et al. (2007). The obtained unit-cell 
volumes at the various P‒T conditions are plotted in Figure 2.

The pressure–volume (P–V) data at the ambient temperature (300 K) 
were fitted with the third-order Birch–Murnaghan (BM) equation of state 
(Birch, 1947) that is expressed as follows:

𝑃𝑃 =
3𝐾𝐾𝑇𝑇 0

2

[

(

𝑉𝑉

𝑉𝑉0

)−7∕3

−

(

𝑉𝑉

𝑉𝑉0

)−5∕3
]{

1 +
3

4

(

𝐾𝐾
′

𝑇𝑇 0
− 4

)

[

(

𝑉𝑉

𝑉𝑉0

)−2∕3

− 1

]}

 (2)

where V0, KT0, and 𝐴𝐴 𝐴𝐴
′

𝑇𝑇 0
 are the zero-pressure unit-cell volume, ambient isothermal bulk modulus and its pressure 

derivative, respectively. With a fixed V0 = 105.95(3) Å 3, the best fitting yielded the values of KT0 = 94.7(1.3) GPa 
and 𝐴𝐴 𝐴𝐴

′

𝑇𝑇 0
  = 4.73(21). These results are in good agreement with the results obtained in a previous study on phase 

E by Shieh et al. (2000).

To obtain the thermal elastic parameters of phase E, the high-temperature P–V data were analyzed with the 
high-temperature Birch–Murnaghan (HTBM) equation of state (Birch,  1947; Zhang & Kostak,  2002). The 
HTBM equation of state is in the same form as Equation 2, except that V0, KT0, and 𝐴𝐴 𝐴𝐴

′

𝑇𝑇 0
 are replaced with VT0, 

KT, and 𝐴𝐴 𝐴𝐴
′

𝑇𝑇
 , which are the zero-pressure unit-cell volume, isothermal bulk modulus and its pressure derivative 

at a constant temperature T, respectively. KT and VT0 can be related to the ambient temperature KT0 and V0 by the 
following expressions:

𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑇𝑇 0 + (𝜕𝜕𝐾𝐾𝑇𝑇 ∕𝜕𝜕𝑇𝑇 )𝑃𝑃 (𝑇𝑇 − 300) (3)

𝑉𝑉𝑇𝑇 0 = 𝑉𝑉0 exp

[

∫
𝑇𝑇

300

𝛼𝛼𝑇𝑇 d𝑇𝑇

]

 (4)

where (∂KT/∂T)P and αT are the temperature derivative of the isothermal bulk modulus and thermal expansion of the 
volume, respectively. Within the limited temperature range of our high P–T experiments, we assumed two approx-
imations, namely αT = α0 (thermal expansion at ambient temperature) and 𝐴𝐴 𝐴𝐴

′

𝑇𝑇
= 𝐴𝐴

′

𝑇𝑇 0
 in the analysis (Nishihara 

et al., 2003). Coupled with the obtained V0, KT0, and 𝐴𝐴 𝐴𝐴
′

𝑇𝑇 0
 values at ambient temperature, fitting the P–V–T data 

at 500, 650, 700, and 900 K together yielded (∂KT/∂T)P = −0.014(3) GPa/K and α0 = 4.7(4) × 10 −5 K −1. The 
obtained thermal equation of state parameters of phase E match our P–V–T experimental data well (Figure 2), 
supporting the assumptions used in the modeling.

3.2. Single-Crystal Elastic Moduli (Cijs) of Phase E at High P–T Conditions

BLS measurements on phase E were performed at high pressures up to 24 GPa and temperatures of 300, 500, 
and 650 K (Figures 1b–1c). All three platelets were used for BLS measurements under ambient conditions, while 
platelets P1 and P2 were used for high-pressure and ambient-temperature BLS measurements and platelet P3 was 
used for high P–T BLS measurements. At given P–T conditions, the acoustic wave velocities were collected with 
an interval of 10° azimuthal angles over a range of 180° for each platelet (Figure 3). The density at high P–T was 
determined via analysis of the single-crystal XRD patterns before and after the Brillouin measurements, whereas 

Figure 2. Unit-cell volumes of phase E at high P‒T conditions. Solid circles 
are the experimental data obtained by X-ray diffraction measurements, and 
solid lines are fitting results using the third-order thermal Birch–Murnaghan 
equation of state (Birch, 1947; Zhang & Kostak, 2002). Black, blue, red, 
purple and olivine denote 300, 500, 650, 700, and 900 K, respectively.
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the density at high pressure and 300 K was calculated by the thermal equation 
of state as mentioned above. The experimental velocity data along various 
crystallographic directions were fitted by Christoffel's equation at each P–T 
point to obtain six single-crystal elastic moduli (Every, 1980):

|𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖 − 𝜌𝜌𝜌𝜌
2
𝛿𝛿𝑖𝑖𝑖𝑖| = 0 (5)

where Cijkl are the elastic stiffness coefficients (or elastic moduli) with full 
suffix notation, ν is the measured acoustic velocity, ρ is the density derived 
from single-crystal XRD measurements, ni and nj are the wave-vector 
(phonon propagation) direction cosines and δkl is the Kronecker delta. Repre-
sentative fitting results of the single-crystal elastic moduli for P1 and P2 at 
21.3 GPa and 300 K and P3 at 13.1 GPa and 650 K are displayed in Figure 3, 
showing that the velocities determined by the BLS spectra agree well with 
the velocities calculated using the fitted single-crystal elastic moduli. All of 
the fitted single-crystal elastic moduli of phase E at various P–T conditions 
are given in Table S2 in Supporting Information S1 and plotted in Figure 4. 
Because the sign of C14 would be reversed when the X-Y axes are rotated by 
(2n + 1) × 60°, the sign of C14 reported by Satta et al. (2019) was flipped 
for comparison in Table S2 in Supporting Information S1. Notably, such a 
treatment does not affect the physical interpretation and the values of other 
single-crystal elastic moduli. Our values under ambient conditions are 
roughly consistent with those of Satta et al. (2019), with the small differences 
interpreted as a result of the iron-substitution effects in phase E.

To obtain the P‒T derivatives of the single-crystal elastic moduli, the exper-
imental single-crystal elastic data were fitted using third-order finite-strain 
equations (Birch, 1978; Duffy & Anderson, 1989) (Figure 4 and Table S3 in 
Supporting Information S1):

𝐶𝐶𝑖𝑖𝑖𝑖(0, 𝑇𝑇 ) = 𝐶𝐶𝑖𝑖𝑖𝑖(0, 300𝐾𝐾) + (𝑇𝑇 − 300) (𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖∕𝜕𝜕𝑇𝑇 )𝑃𝑃 (6)

𝐶𝐶𝑖𝑖𝑖𝑖(𝑃𝑃 𝑃 𝑃𝑃 ) = (1 + 2𝑓𝑓 )
7∕2

[

𝐶𝐶𝑖𝑖𝑖𝑖(0𝑃 𝑃𝑃 ) + 𝑎𝑎1𝑓𝑓
]

+ 𝑎𝑎2𝑃𝑃 (7)

𝑎𝑎1 = 3𝐾𝐾𝑇𝑇 (0, 𝑇𝑇 )
[

(𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖∕𝜕𝜕𝜕𝜕 )𝑇𝑇 − 𝑎𝑎2

]

− 7𝜕𝜕𝑖𝑖𝑖𝑖(0, 𝑇𝑇 ) (8)

𝑓𝑓 =

(

1

2

)

[

(

𝑉𝑉0

𝑉𝑉

)

2

3

− 1

]

 (9)

where Cij(0,300 K) is the elastic modulus under ambient conditions; Cij(0,T) is the elastic modulus at high temper-
ature and ambient pressure; Cij(P,T) is the elastic modulus at given P–T conditions; (∂Cij/∂T)P and (∂Cij/∂P)T are 
the isobaric temperature derivative and the isothermal pressure derivative of the elastic modulus, respectively; 
KT(0,T) is the isothermal bulk modulus at high temperature and ambient pressure; f is the finite strain; V is the 
unit-cell volume determined by single-crystal XRD; and V0 is the unit-cell volume under ambient conditions. The 
parameter a2 is 3 for C11 and C33, 1 for C44, C12 and C13, and 0 for C14.

3.3. Aggregate Elastic Property of Phase E (Ks, G, Vp and Vs)

At each given P–T point, the aggregate adiabatic elastic moduli KS and G were calculated using the derived 
single-crystal elastic moduli in the Voigt–Reuss–Hill average (Hill, 1952). Then, with the KS at ambient condi-
tions fixed to 98.3(7) GPa, we derived the P‒T derivatives of the adiabatic bulk modulus (Figure 5 and Table S3 
in Supporting Information S1) by fitting the Ks values at various P–T conditions using the following equations 
(Angel et al., 2014; Birch, 1978; Stixrude and Lithgow-Bertelloni, 2005):

𝐾𝐾𝑆𝑆 (0, 𝑇𝑇 ) = 𝐾𝐾𝑆𝑆 (0, 300K) +

(

𝜕𝜕𝐾𝐾𝑆𝑆

𝜕𝜕𝑇𝑇

)

𝑃𝑃

(𝑇𝑇 − 300) (10)

Figure 3. Compressional-wave and shear-wave velocities of single-crystal 
phase E as a function of azimuthal angles at high P‒T. (a) Platelets P1 (red 
open circles) and P2 (black open circles) at 21.3 GPa and 300 K. (b) Platelet 
P3 at 13.1 GPa and 650 K. The solid lines are the velocities calculated from 
the derived single-crystal elastic moduli.
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𝐾𝐾𝑆𝑆 (𝑃𝑃 𝑃 𝑃𝑃 ) = 𝐾𝐾𝑆𝑆 (0𝑃 𝑃𝑃 )(1 + 2𝑓𝑓 )
5∕2

{

1 +

[

3

(

𝜕𝜕𝐾𝐾𝑆𝑆

𝜕𝜕𝑃𝑃

)

𝑃𝑃

− 5)

]

𝑓𝑓 +

[(

𝜕𝜕𝐾𝐾𝑆𝑆

𝜕𝜕𝑃𝑃

)

𝑃𝑃

− 4

]

𝑓𝑓
2

}

 (11)

where KS(0,T) is the adiabatic bulk modulus at high temperature and ambient pressure, KS(P, T) is the adiabatic 
bulk modulus at given P–T conditions, (∂KS/∂T)P is the temperature derivative of the adiabatic bulk modulus, and 
(∂KS/∂P)T is the pressure derivative of the adiabatic bulk modulus. The derived P‒T derivatives were 5.00(4) and 
−0.018(1) GPa/K for the adiabatic bulk modulus, respectively. Note that Equation 11 requires the assumptions 
KS(0,T) = KT(0,T) and (∂KS/∂P)T = (∂KT/∂P)T.

Similarly, the P‒T derivatives of the shear modulus were derived by fitting the G values at various P–T condi-
tions using the following equations (Birch, 1978; Stixrude & Lithgow-Bertelloni, 2005) (Figure 5 and Table S3 
in Supporting Information S1):

𝐺𝐺(0, 𝑇𝑇 ) = 𝐺𝐺(0, 300K) +

(

𝜕𝜕𝐺𝐺

𝜕𝜕𝑇𝑇

)

𝑃𝑃

(𝑇𝑇 − 300) (12)

�(� , � ) = (1 + 2� )5∕2
{

�(0, � )
[

1 +
[

3
(��
��

)

�
− 5)�

]]

+
[

6�S(0, � )
(��
��

)

�
− 24K(0, � ) − 14�(0, � ) + 9

2
�S(0, � )

(��S

��

)

�

]

� 2
}

 (13)

where G(0,T) is the shear modulus at high temperature and ambient pressure, G(P,T) is the shear modulus at 
given P–T conditions, (∂G/∂T)P is the temperature derivative of the shear modulus, and (∂G/∂P)T is the pressure 

Figure 4. Single-crystal elastic moduli of phase E at high P‒T conditions. Black, blue and red circles represent the 
experimental data at 300, 500, and 650 K, respectively. Solid lines are the fitting results obtained using thermal third-order 
finite strain equations (Birch, 1978). Open triangles are the results of iron-bearing phase E under ambient conditions from 
Satta et al. (2019). Vertical ticks show the error bars of the elastic moduli. Errors of the pressures are smaller than the 
symbols and are not shown.
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derivative of the shear modulus. With a fixed G value of 61.0(1) GPa under ambient conditions, the pressure 
derivative and temperature derivative are 1.64(2) and −0.013(2) GPa/K for the shear modulus, respectively.

The aggregate VP and VS velocities of phase E were determined by the bulk and shear moduli (KS, G) using the 
following equations:

𝑉𝑉𝑃𝑃 =

√

(

𝐾𝐾𝑆𝑆 +
4

3
𝐺𝐺

)

∕𝜌𝜌 (14)

𝑉𝑉𝑆𝑆 =

√

𝐺𝐺∕𝜌𝜌 (15)

The calculated results at various P–T conditions are given in Table S2 in Supporting Information S1 together 
with the results at ambient conditions reported by Satta et al. (2019). Our VP and VS values under ambient condi-
tions are 7.80(2) and 4.55(1) km/s, which are close to but slightly higher by ∼2.7% than those obtained by Satta 
et al.  (2019), possibly due to the difference in the chemical composition of phase E. Our velocity values are 
marginally consistent with those of Satta et al. (2019) within the reciprocal uncertainties, but we should note that 
the phase E sample used by Satta et al. (2019) contains 9.0 mol% iron so that the effects of iron substitution on 
the elasticity should be further considered in the comparison.

3.4. Anisotropic Factors of Phase E at High P–T

The VP and VS azimuthal anisotropies of phase E were analyzed by using its single-crystal elasticity data at 
high P–T conditions. We calculated the compressional-wave anisotropy factor (AVP) and the shear-wave splitting 
anisotropy factor (AVS) at each P–T point (Table S2 in Supporting Information S1), which are defined as follows 
(Karki et al., 2001; Mainprice et al., 2000):

Figure 5. Aggregate elastic properties of phase E at high P‒T conditions. (a and b) adiabatic bulk and shear moduli. (c and 
d) compressional-wave velocities and shear-wave velocities. Black, blue and red solid circles represent the experimental data 
at 300, 500, and 650 K, respectively. Solid lines are the fitting results obtained using third-order finite strain equations. Open 
triangles are the results of the iron-bearing phase E under ambient conditions from Satta et al. (2019). Most error bars are 
smaller than the symbols and are not shown.
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𝐴𝐴𝐴𝐴𝑃𝑃 = 200 × (𝐴𝐴𝑃𝑃max − 𝐴𝐴𝑃𝑃min) ∕ (𝐴𝐴𝑃𝑃max + 𝐴𝐴𝑃𝑃min) (16)

𝐴𝐴𝐴𝐴S = 200 ×
[

(𝐴𝐴𝑆𝑆1 − 𝐴𝐴𝑆𝑆2) ∕ (𝐴𝐴𝑆𝑆1 + 𝐴𝐴𝑆𝑆2)
]

max
 (17)

where VPmax and VPmin represent the maximum and minimum VP velocities of the 
mineral, respectively, and VS1 and VS2 are two orthogonally polarized VS veloc-
ities propagating along the same direction. Under ambient conditions, the AVP 
and AVs values of phase E are 8.9% and 19.5%, respectively, which are close to 
those of iron-bearing phase E (Satta et al., 2019), implying that 9 mol% iron in 
phase E does not significantly affect the anisotropy under ambient conditions.

4. Discussion and Geophysical Implications
4.1. Elasticity of Phase E and Its Comparison With Relevant Mantle 
Minerals

Using the data obtained from Brillouin scattering spectroscopy and 
single-crystal XRD measurements, we have determined the single-crystal elas-
ticity of the Mg-endmember phase E at high P–T conditions. Analysis of the 
elasticity data by the third-order finite-strain equations yields high P–T deriva-
tives of all Cijs, Ks and G, allowing us to extrapolate the elasticity data of phase 
E to the P–T conditions relevant to the upper mantle and the mantle transition 
zone. The Cijs, aggregate KS, and G under ambient conditions obtained in the 
present study, with the exception of C11, C12, and C14, are 2%–9% higher than 
the experimental results of Satta et al. (2019). These differences are most likely 
due to the effect of iron substitution for magnesium because phase E used 
in the BLS experiments of Satta et al.  (2019) contained 9.0 mol% iron (Fe/
(Mg + Fe) ratio). The longitudinal moduli, C11 and C12, are not sensitive to iron 

substitution, while C14 appears to be highly sensitive. The effect of iron substitution on the elasticity (CijS, KS, and G) 
has been studied for many minerals, such as olivine, diopside, wadsleyite, and bridgmanite (Fan et al., 2019, 2020; 
Fu et al., 2019; Wang et al., 2014). In many cases, the content of iron that substitutes magnesium shows a negative 
effect on the single-crystal elastic moduli, and especially on aggregate KS, G, VP, and VS; that is, iron-bearing miner-
als have relatively lower single-crystal and aggregate elastic moduli than their iron-free counterparts.

A pyrolite model is usually employed to describe the chemical composition and mineralogy of the Earth's mantle. 
The phase relations of dry pyrolite in the Earth's mantle have been well constrained by high P–T experiments 
(Irifune & Isshiki, 1998; Ishii et al., 2011). According to the experimental studies on the phase relations of the 
hydrated pyrolite model and similar compositions (Kawamoto et al., 1995; Komabayashi et al., 2004; Litasov & 
Ohtani, 2003; Zhang et al., 2019), phase E could coexist with olivine, clinopyroxene and majorite in the lowest part 
of the upper mantle and with wadsleyite and majorite in the upper part of the mantle transition zone. A comparison 
of the elastic properties of phase E with its relevant (coexisting) mantle mineral phases could thus help us under-
stand the potential effect of hydration with the existence of phase E on the seismic velocities and anisotropies in 
the Earth's upper mantle and the mantle transition zone. Using the thermoelastic parameters for phase E obtained 
in this study and the parameters for olivine, diopside, majorite and wadsleylite reported in the literature (See Table 
S4 in Supporting Information S1; Fan et al., 2020; Irifune et al., 2008; Isaak et al., 2006, 2010; Katsura et al., 2009; 
Mao et al., 2015; Pandolfo et al., 2015; Wang et al., 2014; Zou et al., 2012), we have modeled VP and VS veloc-
ity profiles of these minerals along a slab geotherm that is 400 K colder than the adiabatic temperature profile 
(Katsura et al., 2010). As shown in Figure 6, we found that both the VP and VS velocities of phase E are significantly 
lower than those of the other mineral phases. Phase E is ∼7% lower in VP and ∼8% lower in VS than olivine at the 
depth of the upper mantle and ∼13% lower in VP and ∼14% lower in VS than wadsleylite at the depth of the mantle 
transition zone. The low VP and VS velocities of phase E imply that it might be a potential cause for the low-velocity 
anomalies observed at the depths of the lowest part of the upper mantle and the upper part of the mantle transition 
zone in the water-rich tectonic settings related to slab subduction (Han et al., 2020; Zhao & Ohtani, 2009).

Using the obtained high P–T single-crystal elastic parameters of phase E, we have also calculated the 
compressional-wave anisotropy factor AVP and shear-wave splitting anisotropy factor AVS along a slab geotherm 

Figure 6. Modeled VP and VS profiles of phase E and other relevant 
mantle phases along a slab geotherm that is 400 K colder than the adiabatic 
temperature profile (Katsura et al., 2010). Blue solid lines: olivine (Ol, Mao 
et al., 2015); purple solid lines: clinopyroxene (Cpx, Fan et al., 2020); black 
solid lines: majorite (Maj-Gt, Irifune et al., 2008); green solid line: wadsleyite 
(Wad, Wang et al., 2014); red solid lines: phase E (PhE, this study). Black and 
red dashed lines show the seismic profiles of AK135 (Kennett et al., 1995) and 
PREM (Dziewonski & Anderson, 1981), respectively.
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400 K lower than the adiabatic temperature profile (Katsura et al., 2010) and 
as a function of pressure at 300 K, respectively (Figure 7). Both AVP and 
AVS show a decrease with pressure and an enhancement with temperature. 
Due to a lack of constraints on the effect of temperature on the single-crystal 
elasticity of clinopyroxene and wadsleylite, we only calculated the AVP and 
AVS of olivine, clinopyroxene and wadsleylite as a function of pressure at 
the ambient temperature using the literature single-crystal elasticity data 
(Hao et al., 2020; Mao et al., 2015; Wang et al., 2014; Zhang et al., 2018) 
for a comparison with phase E. Majorite was not included in the compar-
ison because it is nearly elastically isotropic at high pressures and 300  K 
(Murakami et al., 2008; Sanchez-Valle et al., 2019). As seen in Figure 7, the 
AVP of phase E is significantly lower than that of olivine, clinopyroxene and 
anhydrous wadsleylite but is comparable to that of hydrous wadsleyite. The 
AVS of phase E is only lower than that of clinopyroxene but is higher than 
those of olivine, anhydrous wadsleyite and hydrous wadsleyite. The intrin-
sic elastic anisotropy of phase-E would produce a seismic signature in the 
case of texturing by lattice preferred orientation. Phase E with a relatively 
high AVS may contribute to the shear-wave splitting anisotropy observed at 
the depth of the mantle transition zone in some subduction zones (Chang & 
Ferreira, 2019; Zhang et al., 2018).

4.2. Implications for the Low-Velocity Layers Atop the 410-km Depth

Seismic observations using mainly P and S receiver functions revealed the 
existence of a low-velocity layer atop the mantle transition zone in some 
subduction zones and continental platforms (Han et al., 2020; Li et al., 2022; 
Tauzin et al., 2017; Vinnik & Farra, 2007). A water-induced partial-melting 
model is often employed to interpret the origin of the 410-LVL (Kuritani 
et  al.,  2019; Tauzin et  al.,  2010,  2017). Water, which was predicted to be 
released through the upwelling of a hydrous mantle transition zone and dehy-
dration reactions of a subducted slab or stagnant slab, has been proposed to 
result in partial melting that can significantly reduce the seismic velocities 
(VP and VS) in the lowest part of the upper mantle above the 410 km discon-
tinuity. However, while the existence of water can induce partial melting, it 
may also lead to the formation of phase E, which is stable at the pressures of 
10–18 GPa under slab geotherms and even under normal mantle geotherms 
(Kawamoto et al., 1995; Zhang et al., 2019). The low VP and VS velocities of 
phase E imply that it may contribute to the origin of the 410-LVL.

To evaluate the effect of phase E on the 401-LVL, we have modeled the 
velocity profiles of dry and hydrated pyrolite models as well as the profiles 
of phase E at the depths of 300–520 km corresponding to 10–18 GPa pres-
sure range along a slab geotherm that is 400 K colder than the surrounding 
mantle geotherm (Katsura et al., 2010). The thermal elastic parameters of the 
minerals used for the modeling are listed in Table S4 in Supporting Infor-
mation S1. The mineral assemblages and the proportions of the dry pyrolite 
model are taken from the experimental results of Irifune and Isshiki (1998) 
with the olivine or wadsleyite content fixed at ∼60 vol% in the entire mode-
ling pressure range. For hydrated pyrolite, the amount of phase E was 
added at the expense of olivine or wadsleyite, based on a previous study 
(Satta et al., 2019). According to the water content reported for a hydrous 
ringwoodite inclusion in an ultradeep diamond (Pearson et  al.,  2014), we 
assumed a H2O content of 1.5 wt% for the hydrated pyrolite model, corre-
sponding to ∼13 vol% phase E. As depicted in Figure 8, the hydrated pyrolite 
model shows lower velocities than the dry pyrolite counterpart, while the 

Figure 7. The anisotropy factors AVP and AVS of phase E and representative 
minerals in the upper mantle and the transition zone. The solid lines represent 
phase E (red lines, this study), olivine (black lines, Mao et al., 2015), 
wadsleyite (blue lines, Wang et al., 2014), hydrous wadsleyite (green lines, 
Zhang et al., 2018) and clinopyroxene (pink lines, Hao et al., 2020) as a 
function of pressure at 300 K. The red dashed lines represent the anisotropy 
factors of phase E along a slab geotherm that is 400 K colder than the adiabatic 
temperature profile (Katsura et al., 2010). The vertical gray dashed line marks 
the boundary between the upper mantle and the mantle transition zone.

Figure 8. Comparison between the velocity profiles of a pyrolite model, 
phase E, and seismic models in the upper mantle and the transition zone. (a) 
Modeled velocity profiles of dry pyrolite (red lines) and hydrated pyrolite 
with ∼13 vol% phase E (blue lines) and phase E (brown lines) along a slab 
geotherm that is 400 K colder than the adiabatic temperature profile (Katsura 
et al., 2010). Seismic profiles, AK135 (Kennett et al., 1995) and PREM 
(Dziewonski & Anderson, 1981), are shown as black and blue dashed lines, 
respectively. (b) The velocity contrast between dry and hydrous pyrolites 
(ΔVP,S = 100 × [(VP,S)hydrous−(VP,S)dry]/(VP,S)dry). The black and red lines are 
the compressional velocity contrast (ΔVP) and shear velocity contrast (ΔVS), 
respectively. The vertical gray dashed line marks the boundary between the 
upper mantle and the mantle transition zone.
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reductions in VP and VS, ΔVP,S = 100*[(VP,S)dry−(VP,S)hydrous]/(VP,S)dry, are similar to each other. Both the VP and VS 
velocity profiles of phase E are ∼8% lower than those of the dry pyrolite model (Figure 8a). Compared with the 
dry pyrolite model, phase E with ∼13 vol% in the hydrated pyrolite model can lead to a decrease in both VP and 
VS by ∼1.0% at the depth of the lowermost upper mantle and by ∼1.6% at the depth of the mantle transition zone, 
respectively (Figure 8b). The modeled VP and VS profiles of phase E are much lower than those of AK135 and 
PREM; hence, it is expected that the enrichment of phase E in the hydrous regions of the lowest part of the upper 
mantle and the mantle transition zone can lead to a negative seismic anomaly. We note that the modeled velocity 
profiles of the dry and hydrated pyrolite models are slightly higher than those of the AK135 and PREM models 
(Dziewonski & Anderson, 1981; Kennett et al., 1995), which is most likely due to the lower temperature of the 
selected slab geotherm. The use of the elasticity of the Mg-endmember phase E in the present modeling calcula-
tions may also overestimate the VP and VS profiles. In the pyrolite model, phase E should contain some amounts of 
iron and aluminum, which can significantly reduce the aggregate elastic moduli and acoustic velocities of phase 
E (Satta et al., 2019; Xu et al., 2020).

A number of evidences from high P–T experiments and geophysical and geological observations indicate that at 
least in some regions, the mantle transition zone should be highly hydrated (Karato, 2011; Karato et al., 2020; 
Ohtani et al., 2004; Pearson et al., 2014; Tschauner et al., 2018). The dominant minerals in the mantle transition 
zone, wadsleyite and ringwoodite, can accommodate up to ∼3 wt% H2O, which is much higher than the H2O 
storage capacity of olivine (∼0.1 wt%) (Fei & Katsura, 2020; Ferot & Bolfan-Casanova, 2012; Ohtani, 2020). 
Hence, water is expected to be released when materials from the hydrous mantle transition zone are transported 
above the 410 km discontinuity via mantle upwelling, triggering partial melting that can be used to explain the 
low-velocity layer atop 410 km (Han et al., 2020; Yang & Faccenda, 2020). In addition, subducted slabs or stag-
nant slabs with water stored mainly in hydrous minerals may undergo dehydration reactions and release water 
that migrates into the overlying mantle wedge or upper mantle (Ohtani & Zhao, 2009; Richard & Iwamori, 2010; 
Richard et al., 2006; Sheng et al., 2016; Zhao & Ohtani, 2009). While the released water can induce partial melt-
ing in the lowermost upper mantle, it can also be re-absorbed by forming phase E according to the previous exper-
imental studies on the phase relations of peridotites (Kawamoto et al., 1995; Komabayashi et al., 2004; Zhang 
et al., 2019). Based on the results obtained in the present study, the formation of phase E would lead to low VP and 
VS velocities in the regions and thus helps explain the seismic observations of the 410-LVL. Experimental studies 
on hydrous KLB-1 peridotite have also shown that (Fe, Al)-bearing phase E is stable under the P–T conditions 
along a nearly normal mantle geotherm (Kawamoto et al., 1995; Zhang et al., 2019). The 410-LVLs are charac-
terized by a negative anomaly for both VP and VS seismic velocities. A recent seismological study indicated that 
the seismic anomalies of the 410-LVL beneath the northwest Pacific subduction zone were ∼1.0%–1.5% for VP 
and ∼2.5% for VS (Han et al., 2020). According to our modeling results on the velocity profiles of phase E and the 
dry and hydrated pyrolite models, it is estimated that the hydrated pyrolite model containing 13–19 vol% phase 
E, which corresponds to an H2O content of 1.5–2.2 wt%, shows a velocity reduction of ∼1.0–1.5% for both VP 
and VS relative to the dry pyrolite model. The pyrolite model containing 13–19 vol% phase E can reproduce the 
observed VP anomaly of the 410-LVL beneath the northwest Pacific subduction zone; however, it is insufficient 
to reproduce the observed VS anomaly. Therefore, the oversimplified model of hydrated pyrolite containing phase 
E alone cannot explain the genesis of 410-LVL, and other mechanisms, including partial melting that can lead to 
significantly lower VS (Berryman, 2000; Hammond & Humphreys, 2000; Karato, 2014; Takei, 2017), should also 
be taken into consideration.

5. Conclusions
The high P–T single-crystal elasticity of phase E has been determined by performing XRD and Brillouin scat-
tering measurements up to 24 GPa and 900 K. Analysis of the obtained single-crystal elasticity data using the 
third-ordered finite-strain equations allowed us to derive the aggregate elastic parameters of phase E. The adia-
batic bulk and shear moduli of phase E under ambient conditions are determined to be KS0 = 98.3(7) GPa and 
G0  =  61.0(1)  GPa, respectively. Their pressure derivatives and temperature derivatives are determined to be 
(∂KS/∂P)T = 5.00(4) and (∂KS/∂T)P = −0.018(1) GPa/K for the adiabatic bulk modulus and (∂G/∂P)T = 1.64(2) 
and (∂G/∂T)P = −0.013(2) GPa/K for the shear modulus, respectively. Phase E has lower compressional velocity 
and shear velocity than other relevant or potentially coexisting minerals in the upper mantle and the upper part of 
the mantle transition zone. Based on the modeled velocity profiles of phase E, dry pyrolite and hydrated (or phase 
E-bearing) pyrolite models along a slab geotherm 400 K colder than the surrounding mantle, we found that the 
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existence of phase E would result in low-velocity seismic signatures, implying that phase E is a potential cause 
for the low-velocity layer atop 410-km depth in some cold and highly-hydrated regions and may also account for 
some low velocity anomalies in the mantle transition zone.

Data Availability Statement
P–V–T data are listed in Table S1 in Supporting Information S1. Single-crystal and aggregate elastic data are 
listed in Tables S2 and S3 in Supporting Information S1. Thermoelastic parameters used in the modeling of seis-
mic profiles are given in Table S4 in Supporting Information S1. All these data can also be downloaded online in 
the Zenodo data repository (https://zenodo.org/record/7243256).
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