Hydrogen incorporation mechanism in the lower-mantle bridgmanite

NARANGOO PUREVJAV1,2†, NAOTAKA TOMIOKA3, SHIGERU YAMASHITA1, KELJI SHINODA4,
SACHIO KOBAYASHI1, KENJI SHIMIZU3, MOTOO ITO3, SUUY Fuji5, JESSE GU5,‡, CHRISTINA HOFFMANN6, JUNG-FU LIN6, AND TAKUO OKUCHI1,7,*

1Institute for Planetary Materials, Okayama University, Misasa 682-0193, Japan
2Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
3Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8520, Japan
4Department of Geosciences, Graduate School of Science, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi, Osaka 558-8585, Japan
5Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.
6Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, U.S.A.
7Institute for Integrated Radiation and Nuclear Science, Kyoto University, Koutani, Osaka 590-0494, Japan

ABSTRACT

Bridgmanite, the most abundant mineral in the lower mantle, can play an essential role in deep-Earth hydrogen storage and circulation processes. To better evaluate the hydrogen storage capacity and its substitution mechanism in bridgmanite occurring in nature, we have synthesized high-quality single-crystal bridgmanite with a composition of (Mg0.88Fe0.05Fe0.10Al0.05)(Si0.88Al0.08Si0.02)O10 at nearly water-saturated environments relevant to topmost lower mantle pressure and temperature conditions. The crystallographic site position of hydrogen in the synthetic (Fe,Al)-bearing bridgmanite is evaluated by a time-of-flight single-crystal neutron diffraction scheme, together with supporting evidence from polarized infrared spectroscopy. Analysis of the results shows that the primary hydrogen site has an OH bond direction nearly parallel to the crystallographic b axis of the orthorhombic bridgmanite lattice, where hydrogen is distributed along the line between two oxygen anions to form a straight geometry of covalent and hydrogen bonds. Our modeled results show that hydrogen is incorporated into the crystal structure via coupled substitution of Al3+ and H+ simultaneously exchanging for Si4+, which does not require any cation vacancy. The concentration of hydrogen evaluated by secondary-ion mass spectrometry and neutron diffraction is ~0.1 wt% H2O and consistent with each other, showing that neutron diffraction can be an alternative quantitative means for the characterization of trace amounts of hydrogen and its site occupancy in nominally anhydrous minerals.

Keywords: Bridgmanite, lower mantle, hydrogen substitution, neutron diffraction

INTRODUCTION

Chemically bonded hydrogen in rock-forming minerals of mafic oceanic lithospheres could survive subduction processes and be transported into the deep Earth via plate tectonic motions (Kawakatsu and Watada 2007; Ohtani et al. 2004; Thompson 1992). The total mass of such hydrogen cycle in the present Earth has been proposed to exceed the mass of surface ocean water (Karato et al. 2020). Crystal structures of hydrous and nominally anhydrous minerals in the deep Earth are possible candidates for transporting such hydrogen into the deep mantle. The hydrogen incorporation in these minerals can involve not only covalent hydroxyl (OH) bonds but also moderate to strong hydrogen bonds as determined primarily by neutron diffraction works (Purevjav et al. 2014, 2016, 2018, 2020; Sano-Furukawa et al. 2011, 2018; Tomioka et al. 2016; Trots et al. 2013; Suzuki et al. 2001). These hydrogen bonds in the host minerals allow hydrogen to stay in the host crystal structures even at relevant high-temperature conditions. Among such hydrogen-hosting minerals, wadsleyite and ringwoodite in the mantle transition zone from 410 to 660 km depth are among the most representative ones and relatively well documented; these minerals can have total water storage capacities as high as six ocean masses (Karato et al. 2020 and references therein). The actual existence of hydrogen in the transition zone had also been confirmed by the discovery of a natural hydrous ringwoodite crystal in a diamond inclusion (Pearson et al. 2014).

As for the fate of hydrogen beyond 660 km depth, it is essential to consider that some of the oceanic lithospheres can penetrate through the transition zone and carry some hydrogen into the lower mantle (Fukao et al. 2009; Fukao and Obaayashi 2013; Portner et al. 2020). The lower mantle, the largest volume fraction of the layered Earth, consists of bridgmanite, ferropericlase, and other minor constituent phases. Bridgmanite likely represents ~80% of the lower-mantle volume (Hirose et al. 2017), such that hydrogen capacity and stability in this mineral phase is one of the primary factors in determining the distribution and
circulation of hydrogen within the multi-layered Earth. There have been extensive studies on hydrogen in bridgmanite in past decades, including analyses by Fourier transform infrared (FTIR) spectroscopy and secondary-ion mass spectrometry (SIMS) for synthetic crystals obtained at relevant high pressure and temperature conditions (Bolfán-Casanova et al. 2003; Litasov et al. 2003; Meade et al. 1994; Murakami et al. 2002; Liu et al. 2021; Panero et al. 2015). In addition to these studies, Fu et al. (2019) conducted a combined analysis of polarized FTIR and Nano-SIMS to characterize hydrogen in (Fe,Al)-bearing bridgmanite synthesized at nearly water-saturated, uppermost lower mantle conditions. They reported that the single-crystal bridgmanite, Mg$_{0.88}$Fe$_{0.12}$Al$_{0.15}$Si$_{0.96}$O$_{3}$, contains ~1020 (±70) ppm of H$_2$O and displays two pronounced OH$^-$ stretching bands at ~3230 and ~3460 cm$^{-1}$. Following these works, here we have focused on the analysis of hydrogen’s chemical bonding environments in the crystal structure of (Fe,Al)-bearing bridgmanite. For the first time, the high-quality bridgmanite crystals we synthesized here permit time-of-flight (TOF) Laue neutron diffraction analysis. These results allow us to refine the site of chemically bonded hydrogen and to model its cation exchange mechanism within the crystal structure. We have also conducted polarized FTIR analysis in all three principal crystal orientations. Together with SIMS analysis of the crystals, these results provide new insights in our understanding of the hydrogen substitution site and mechanism in the crystal structure of bridgmanite.

CRYSTAL STRUCTURE OF BRIDGMANITE AND ITS HYDROGEN EXCHANGE MECHANISM

Here we briefly introduce the crystal structure of bridgmanite and its previously proposed hydrogen substitution mechanism as this information will be used to evaluate the actual experimental data for the hydrogen site occupancy in the present study. Figure 1 shows the crystal structure of (Fe, Al)-bearing bridgmanite (space group Pbnm, which is the same as that of MgSiO$_3$ bridgmanite (Horiuchi et al. 1987; Kudoh et al. 1990; Nakatsuka et al. 2021; Sugahara et al. 2006; Ross and Hazen 1989). The A cation site with 12 (or practically eight) oxygen anions (O$^{2–}$) is occupied by either magnesium (Mg$^{2+}$), iron (Fe$^{3+}$), or aluminum (Al$^{3+}$). The B cation site with six O$^{2–}$ anions is occupied by either silicon (Si$^{4+}$) or Al$^{3+}$. There are two O$^2–$ sites (O1 and O2), which were proposed to include a minor fraction of vacant sites (V0) (Navrotsky 1999). Each O1 is shared by two BO$_6$ octahedra with the bonding direction along the c-axis, while each O2 is shared by two BO$_6$ octahedra with the bonding direction normal to the c-axis. Based on the aforementioned crystal structure, two types of hydrogen exchange mechanisms have been proposed for the Al-bearing bridgmanite system. These are: (1) Al$^{3+}$ (or possibly Fe$^{3+}$) and H$^+$ simultaneously exchange for Si$^{4+}$ at a B site (Muir and Brodholt 2018; Townsend et al. 2016), and (2) two Al$^{3+}$ or Fe$^{3+}$ and one V0 simultaneously exchange for two Si$^{4+}$ at two B sites, and then some fraction of the generated V0 is coupled with another O$^2–$ to simultaneously exchange for two OH$^−$ (Litasov et al. 2003; Navrotsky 1999).

EXPERIMENTAL AND ANALYTICAL PROCEDURES

Synthesis

In the previous study, we synthesized high-quality, inclusion-free crystals of (Fe,Al)-bearing bridgmanite at a fixed pressure-temperature condition of 24 GPa and 1800 °C using a scaled-up Kawai-type cell (Fu et al. 2019; Okuchi et al. 2015). The current synthesis procedure was designed for growing larger crystals, several hundreds of micrometers in size, while maintaining the quality of the crystals. The starting material was made of a powder mixture of MgSiO$_3$, Mg(OH)$_2$, Fe$_2$O$_3$, and Al$_2$O$_3$, with 68.4, 20.2, 8.9, and 6.1 wt%, respectively. It contains 6 wt% of H$_2$O, simulating a water-saturated peridotite system. Approximately 15 mg of the mixture was packed into a Pt capsule with outer and inner diameters of 2.3 and 2.0 mm, respectively. The capsule was sealed by welding, inserted into a 14/6 Kawai-type cell assemblage, and then pressurized to 24 GPa by applying a 19 MN load at the Institute for Planetary Materials (IPM), Okayama University. At the targeted pressure, the capsule was heated to 1820 °C and kept for 10 min to melt the mixture. Then, the temperature was slowly reduced to 1690 °C with a cooling rate of 0.5 °C/min for 4 h, and even more slowly decreased to 1590 °C with a rate of 0.1 °C/min for 12 h. Finally, the temperature was kept constant for another 4 h. After this series of temperature control procedures, the sample was quenched by cutting off the power source under high pressure. The assemblage was then decompressed to ambient pressure.

Phase identification and major element analysis

After decomposition and recovery of the product crystals from the capsule, several crystals were selected and analyzed using micro-focused XRD (Rigaku’s RINT RAPID II-CMF) at IPM. The largest brownish bridgmanite crystals were ~500 µm in size (Fig. 2a). A small fraction of transparent majorite crystals of ~200 µm sizes were also found to coexist with the bridgmanite. Fine-powdered and light-greenish quenched aggregates were also occasionally found, which were identified by XRD analysis as a mixture of dense hydrous magnesium silicate (DHMS) phase D and brucite. This indicates that the bridgmanite crystals were grown in a nearly water-saturated magmatic environment (Fig. 2b).

Major-element compositions of the bridgmanite crystals were determined using a JEOL JXA-8800 electron-probe microanalyzer (EPMA), with operating conditions of 15 kV accelerating voltage, 12.1 nA probe current, and 5 µm probe size. Two crystals with polished surfaces were measured by taking four data points from each crystal (Table 1). In addition to these point analyses, macroscopic chemical homogeneity of Mg, Si, Fe, Al, and O within these crystals was confirmed by map analysis. An additional double-side polished crystal 190 × 170 µm2 in size and ~200 µm in thickness was prepared for Mössbauer spectroscopy of 57Fe analysis at Advanced Photon Source at the Argonne National Laboratory (Fig. 2c). Ferric iron fraction of the bridgmanite crystal was determined to be Fe$^{3+}$/Fe$^{2+}$ = ~52% (Fig. 2d). Based on these results, the major-element chemical formula of...
Transmission electron microscopy

Four bridgmanite crystals of 200–400 µm size were prepared for transmission electron microscopy (TEM) analysis. They were cross-sectioned and polished to prepare for five independent foils of 100 to 150 nm in thickness and lateral sizes of ∼12 × 8 µm, using a Hitachi SMI-4050 focused ion beam apparatus. Figure 3 shows representative TEM images of one of the foils using JEOL JEM-ARM200F at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), which was operated at low magnification TEM mode (Fig. 3a) and high-resolution scanning TEM (HR-STEM) mode (Figs. 3b and 3c) at 200 kV accelerating voltage. Nanoscale analysis of the samples shows that they are homogeneous and free of inclusions and defects, indicating that hydrogen must be incorporated in the lattice instead of forming precipitates or inclusions within the crystal. The selected-area electron diffraction patterns also feature sharp spots consistent with a long-range ordered high-quality crystal structure (Fig. 3d).

Polarized Infrared and SIMS analysis

Using polarized FTIR spectroscopy, we determined the bonding direction and strength of structural hydroxyls (OH−) within the three-dimensional lattice of the (Fe,Al)-bearing bridgmanite (Fig. 4). Three crystals of ∼400 µm sizes were selected for determination of their crystallographic orientations using X-ray precession photography at Osaka Metropolitan University (Figs. 4e and 4f). Double-side polished thin sections of thicknesses from 100 to 350 µm were prepared to have orientations normal to the three crystallographic axes of bridgmanite. FTIR spectra of the three sections were taken at JPM using a JASCO FTIR-6200 spectrometer coupled to an IRT-7000 microscope with 10× objective-condenser, a KBr/Ge beamsplitter, an MCT detector, a ceramic infrared light source, and a KRS-5/Al wire-grid polarizer. A series of polarized spectra were collected within each section, where 1024 scans were accumulated in each spectrum with an aperture size of 50 × 50 µm and a wavenumber resolution of 4 cm−1. Considering the limit of page space, two spectra series from sections normal to a and c axes are shown in detail, which are essential to determine the orientation of the O-H dipoles (Figs. 4a and 4b). Nonlinear peak fitting analysis was conducted for these series to model each band. Pole figures were prepared to show the two most important bands within the two spectra series (Figs. 4c and 4d). These spectra within each crystal were highly reproducible at different aperture positions, indicating the homogeneous distribution of hydrogen within the crystal.

The hydrogen concentration was quantitatively analyzed by SIMS (CAMECA IMS-6f) at JAMSTEC. The other three crystals of ∼250 µm sizes were embedded in an indium pellet together with standard materials. Sample mounts were ultrasonically washed using acetone and pure water and then dried in a vacuum oven overnight before coating. The mount was then coated with gold of 30 nm thickness and kept in a SIMS sample chamber in a vacuum for more than a day before the analysis. This procedure worked effectively to reduce the background of absorbed water on the sample surface. In the SIMS measurements, a primary 12C+ beam operated at 1 nA and 14.5 keV was focused to a 15 µm spot on the sample surface. Normal incident electron shower was used for electrostatic charge neutralization of the sputtering area. A field aperture was used to permit transmission of ions from the central area of 10 µm in diameter of the sputtered region to minimize the hydrogen signals from remaining absorbed water on the sample surface. The secondary ions of H+, 12C+, and 13C+ were collected from the sputtered area sequentially by an electron multiplier with 1 s × 20 cycles. Total duration of each analysis was ∼5 min, including 120 s of pre-sputtering. For hydrogen standard materials, we used: (1) natural amphibole from the Ichinomegata volcano (Miyagi and Yurimoto 1995) and (2) apyritic glass of a mid-oceanic ridge basalt EPR-G3 from the East Pacific Rise (Shimizu et al. 2017), which were reported to contain 1.66 and 0.22 wt% of H2O, respectively (Fig. 5). As for the dry silicate standard for background analyses of hydrogen and carbon, San Carlos olivine was used. While we measured 12C+ for monitoring contaminations from invisible scratches or cracks on the minerals, we did not observe any irregularly higher 12C+/13C+ ratio than the carbon background. To determine the hydrogen concentration in sample crystals, five to seven data points were collected from different portions of each crystal, where we once again confirmed that hydrogen was homogeneously distributed within these crystals, as in the case of FTIR results. Figure 5 shows our procedure to determine the hydrogen concentration as H2O in the samples, assuming a linear relationship between their concentrations and the 12C+/13C+ ratio. We did not conduct background correction of H2O because the observed 12C+/13C+ ratio of San Carlos olivine was negligibly small compared

Figure 2. Synthesis and characterization of the (Fe,Al)-bearing bridgmanite crystals. All scale bars shown with black color are 100 µm in length. (a) A stereo microscope image of the recovered bridgmanite crystals with dark-brownish color and subhedral to euhedral forms. (b) A micro-focused X-ray diffraction pattern of the recovered aggregates with a mixture of the bridgmanite (asterisks), brucite (Br), and DHMS phase D (D), indicating that the bridgmanite crystals were grown under nearly water-saturated condition. The inset shows the appearance of the aggregates. (c) Double-side polished crystal of the (Fe,Al)-bearing bridgmanite with a thickness of ∼200 µm. The red circles indicate the areas for Mössbauer measurements. (d) Mössbauer spectrum of the bridgmanite crystal. The spectrum was collected using a 57Co point source with a beam size of 300 µm and a collection time of ∼40 h. The spectrum was fit with two doublets, corresponding to Fe2+ (green) and Fe3+ (blue) using the MossA program (Prescher et al. 2012). Analysis of the spectrum shows ~52% Fe2+/ΣFe and ~48% Fe3+/ΣFe. (Color online.)
with the sample crystals. The H\textsubscript{2}O concentration in the bridgmanite was either 630(40) or 810(50) ppm: the former was obtained using the natural amphibole standard, and the latter was obtained using the EPR-G3 glass. These results are compared with the neutron diffraction results that are described later in this paper.

Neutron diffraction and major element distribution

As collaboratively demonstrated by the data sets of EPMA, HR-(S)TEM, FTIR, and SIMS analyses, the synthesized (Fe,Al)-bearing bridgmanite crystals were chemically homogeneous in their major cations and hydrogen distributions (Okachi et al. 2015). In the present study, we aim to refine the site position of hydrogen in the bridgmanite crystal structure, where neutron diffraction plays the most essential role. To achieve the task, it is essential to find site distributions and occupancies of all major cations and anions in addition to hydrogen, because hydrogen can only become visible after removing all scattering densities of these stronger neutron scatterers from the bridgmanite lattice space. One of the largest crystals was selected for neutron diffraction, which was 0.4 × 0.5 × 0.15 mm3. The crystal was exposed to the neutron beam for ~2.5 days in total at a TOF Laue diffractometer TOPAZ installed at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, which was operated at 1.4 MW proton beam power (Schultz et al. 2014). The crystal was cooled down to 100 K by cold nitrogen gas, where the signal-to-noise ratio of higher-order reflections was enhanced (Purevjav et al. 2016, 2018, 2020). For covering the full reciprocal space, we sequentially reoriented the crystal to have 25 different orientations with the help of the CrystalPlan software (Zikovsky et al. 2011). The obtained 4D-intensity dataset was refined using the General Structure Analysis Software (Larson and Von Dreele 2004). The optimized structure parameters are summarized in Table 2. The refined space group of the bridgmanite crystal is \textit{Pbam}, consistent with the previous studies. The lattice constants determined at 100 K are \textit{a} = 4.8071(2) Å, \textit{b} = 4.9473(1) Å, and \textit{c} = 6.9141(2) Å. The CIF5 is available.

Based on the EPMA analysis, we have obtained the total occupancies of A and B sites for Mg, Fe, Al, and Si cations. Upon defining their relative distributions between A and B sites (Fig. 1), we considered their preferences reported in the previous crystal-chemical studies of aluminous and/or ferrous bridgmanite: (1) Mg and Fe strongly prefer the A site; (2) Si strongly prefers the B site; and (3) Al moderately prefers the B site, which is all due to the relations between the relevant site volumes and ionic radii (Lin et al. 2016; Nakatsuka et al. 2021; Nishio-Hamane et al. 2005). In addition, Al can be distributed into the A site when the capacity of the B site is exceeded, as confirmed by the stability of the bridgmanite structure along the solid solution of Mg\textsubscript{2}SiO\textsubscript{4} and Mg\textsubscript{2}Al\textsubscript{2}Si\textsubscript{2}O\textsubscript{8} (Hirose et al. 2001; Kubo and Akaogi 2000). Therefore, in our structural refinements, Mg and Fe were all fixed in the A site, and Si was fixed in the B site, whereas Al occupancies were refined between the A and B sites while constraining their total to be equal with the bulk analytical result from EPMA. As shown in Table 2, this constrained refinement procedure for cation occupancies provided a very reasonable solution: the neutron coherent scattering length of 16OFe (∼2.3), 27Al (∼3.45), 28Si (∼4.15), and 24Mg (∼5.38) are all substantially different from each other, guaranteeing that their site distribution was solely constrained as long as the scattering intensity dataset had enough quality. We found that the total occupancy of the A site was 1.01 as the sum of Mg, Fe, and Al nuclear site occupancies, whereas its total cation charge was 2.11 as the sum of Mg2+, Fe2+, Fe3+, and Al3+ valences. We also found that the total occupancy of the B site was 0.99 as the sum of Al and Si nuclear site occupancies, where its total cation charge was 3.84 as the sum of Al3+ and Si4+ valences. The total cation valence charge at the A and B sites was 2.11 + 3.84 = 5.95, which was smaller than the total anion charge of 6.00, as necessarily expected when hydrogen cations were additionally involved within the crystal structure. From these results on the nuclear site occupancies, we concluded that Fe3+ or Fe4+ did not substantially exist in the B site, which was in contrast to some previous reports (Frost and Langenhorst 2002; Hummer and Fei 2012; Litasov et al. 2003). We note that the results were obtained along with the refined scale factor that assured full occupancies of the two oxygen sites (Table 2). Unreasonable cation site deficiencies in both the A and B sites would be necessary if we instead assumed nontrivial oxygen site vacancies, as previously proposed (Navrotsky 1999).

Neutron diffraction and hydrogen site analysis

Normal hydrogen (1H) generates negative scattering length density distribution of neutrons, whereas all other atoms generate positive densities. Therefore, even if the concentration of hydrogen is much smaller than the other atoms, its position can still be detectable as a unique negative anomaly in the three-dimensional scattering density map (Fourier map). To find such an anomaly in our data, we obtained a difference-Fourier map similar to the case of our previous

Figure 3. TEM/STEM micrographs of the (Fe,Al)-bearing bridgmanite crystal. (a) A bright-field TEM image of a representative thin foil, which shows homogeneous crystal without visible inclusions or defects. (b) A bright-field STEM image showing the lattice fringes of (001). (c) A Fourier-noise-filtered image of (b), which confirmed high-quality lattice spaces without disturbances. (d) A selected-area electron diffraction (SAED) pattern along the [\(\overline{1}10\)] zone axis of the crystal. The SAED pattern shows sharp reflection spots of the bridgmanite structure.

\footnotesize

5 CIF (Crystallographic Information File) is a standard for reporting crystal structure information in detail, which is widely used in the chemistry and materials science communities.

\footnotesize

American Mineralogist, vol. 109, 2024

\footnotesize

Downloaded from http://pubs.geoscienceworld.org/msa/ammin/article-pdf/109/6/1036/6444288/am-2022-8680.d7casa_token=1q7M640nEA9AAAaHdjfXUQPTeUnq7hDqzgqpo=rWZq56m961yF0jBWVKeGjZM

by University of Texas at Austin user on 04 July 2024

\footnotesize

by University of Texas at Austin user

\footnotesize

on 04 July 2024

\footnotesize

by University of Texas at Austin user
work (Purevjav et al. 2018). We calculated this map using the difference between all major cation and anion densities and the observed neutron scattering densities. To discriminate the hydrogen site, we refined the coordinates, the occupancy, and all major cation and anion densities and the observed neutron scattering densities.

Neutron diffraction and hydrogen concentration

After finding the primary site, we try to evaluate its occupancy, which is equivalent to the hydrogen concentration in the crystal structure. This is a much more challenging task than finding the site because of its small occupancy, low site symmetry, and very large Debye-Waller factors, which all consistently make the quantitative evaluation of scattering density of hydrogen difficult. We previously reported that the accuracy of refined hydrogen occupancy is secured by its stability as a function of resolution in space, where the resolution increases with increasing number of reflections at smaller d-spacings (Purevjav et al. 2016, 2018). Following this methodology, we evaluated the hydrogen occupancy in bridgmanite (Fig. 7).

TABLE 1. Major-element composition of two representative bridgmanite crystals analyzed by EPMA

<table>
<thead>
<tr>
<th>Crystal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>51.6</td>
<td>51.5</td>
<td>52.0</td>
<td>51.9</td>
<td>51.8(2)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>7.1</td>
<td>7.5</td>
<td>7.1</td>
<td>6.9</td>
<td>7.1(3)</td>
</tr>
<tr>
<td>MgO</td>
<td>34.7</td>
<td>34.5</td>
<td>34.6</td>
<td>34.7</td>
<td>34.6(1)</td>
</tr>
<tr>
<td>FeO*</td>
<td>6.6</td>
<td>6.8</td>
<td>6.5</td>
<td>6.6(1)</td>
<td>6.6(1)</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.3</td>
<td>100.2</td>
<td>99.9</td>
<td>100.1(2)</td>
</tr>
</tbody>
</table>

Notes: The weight percent of each oxide component is listed, where FeO* is determined assuming all Fe is Fe²⁺. *Total average values of the two crystals were used for the neutron structure refinement.

Figure 4. Polarized infrared absorption spectra, pole figures, and photographs of the oriented crystal sections of bridgmanite. (a) A series of spectra measured from the section cut normal to the a-axis and double-side polished into 350(±10) μm thickness. It was measured along the orientation from 0° (the polarization of the IR beam parallel to the c-axis via 90° (parallel to the b-axis) to 180° (again parallel to the c-axis). (b) A series of spectra measured from the section cut normal to the c-axis and double-side polished into 100(±10) μm thickness. It was measured along the orientation from 0° (the polarization of the IR beam parallel to the a-axis) via 90° (parallel to the b-axis) to 180° (again parallel to the a-axis). (c and d) The couple of pole figures corresponding to the series of spectra a and b. These show intensity trend of integrated absorbances of 3480 cm⁻¹ (open circle) and 3160 cm⁻¹ (filled circle) bands, respectively. (e and f) The measured crystal sections cut normal to the a and c axes, respectively. For each spectrum shown in a and b, a baseline for the window of O-H stretching region (2300 to 3800 cm⁻¹) was defined as a spline function covering the original spectrum from 1500 to 4000 cm⁻¹, and was subtracted from the original. This baseline was close to linear in the window of the O-H stretching region. For defining each point shown in c and d, a nonlinear peak-fitting analysis was conducted to resolve overlapped Gaussian peaks within the series of spectra a and b. (Color online.)
The integrated area intensity of the band showed the largest O_1 concentrations from the two crystals (an H/Si ratio $= 4\pm 1$). The bonding geometries must be highly anisotropic within the bridgmanite structure. By carefully evaluating the orientational dependence of the proton absorbances along the c-axis, the covalent hydroxyl bond has a distance of 1.03(7) Å, and the counterpart hydrogen bond has a distance of 1.81(7) Å. The hydrogen sites related to the other three bands at 3480, 3160, and 2680 cm$^{-1}$ are not yet clearly resolved by neutron diffraction. Nonetheless, they show substantial pleochroism as a function of orientation, making them definable as independent bands.

RESULTS AND DISCUSSION

Primary site position deduced from infrared and neutron results

Using the polarized FTIR results, here we discuss the most plausible hydroxyl bonding strength and direction in the bridgmanite. It was suggested that multiple bonding geometries coexisted within the crystal structure because of such broad and orientation-dependent infrared absorption profiles, which ranged from 2300 to 3800 cm$^{-1}$ (Fig. 4). The bonding geometries must also be highly anisotropic within the bridgmanite structure. By carefully evaluating the orientational dependence of the profiles, we assigned four coexisting vibration bands, which have peak wavenumbers at 3480(±40), 3160(±20), 2880(±20), and 2680(±50) cm$^{-1}$, respectively. The integrated area intensity of the 3160 cm$^{-1}$ band was much more significant than the 3480 cm$^{-1}$ band was reported for both Al-free and Al-bearing bridgmanite (Fu et al. 2019; Litasov et al. 2003). Considering the features of the two strong bands, we conclude that the most important hydrogen site formed hydroxyls approximately aligned along the b-axis with moderately strong hydrogen bonding, whereas the second site was highly anisotropic within the bridgmanite structure. By carefully evaluating the orientational dependence of the profiles, we assigned four coexisting vibration bands, which have peak wavenumbers at 3480(±40), 3160(±20), 2880(±20), and 2680(±50) cm$^{-1}$, respectively. The hydrogen sites related to the other three bands at 3480, 3160, and 2680 cm$^{-1}$ are not yet clearly resolved by neutron diffraction. Nonetheless, they show substantial pleochroism as a function of orientation, making them definable as independent bands.

With the new insights from these infrared results, it follows that the primary hydrogen site is located between two O_1 oxygen anions, which is the most consistent solution among the possible candidates suggested from the neutron diffraction results. These two O_1 atoms form an edge of the A site dodecahedron, where the hydrogen is installed with a hydrogen bonding angle of 179(6)$^\circ$ (Fig. 6), forming a straight bonding geometry along the edge. The covalent hydroxyl bond has a distance of 1.03(7) Å, and the counterpart hydrogen bond has a distance of 1.81(7) Å. The hydrogen sites related to the other three bands at 3480, 2880, and at 2680 cm$^{-1}$ are not yet clearly resolved by neutron diffraction. Nonetheless, they show substantial pleochroism as a function of orientation, making them definable as independent bands. We currently do not have any conclusive solution on their crystallographic geometry. A suggestion may come from previous infrared evidence for another nominally anhydrous mineral having an octahedrally coordinated Si cation site. For example, a remarkably similar infrared band of very weak absorption at 2659–2667 cm$^{-1}$ was reported for both Al-free and Al-bearing stishovite, where either reaction of Si^{4+} ↔ $Al^{3+} + H^+$ or Si^{4+} ↔ $4H^+$ was proposed to generate its wide variety of hydroxyl absorption bands (Litasov et al. 2007). In addition, a combination of two

| Table 2. Refined structure parameters of the (Fe, Al)-bearing bridgmanite |
|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|
Wyckoff positions	Atoms	Coordinates	Occupancies	Debye-Waller factors ($\times 10^3$, Å2)								
4b (A-site) Mg	0.51446(7)	0.55654(5)	0.25	0.877	0.101	0.034(1)	0.370(10)	0.352(7)	0.601(8)	0.080(7)	0.069(4)	0.084(4)
4b (B-site) Si	0.5	0	0	0.875	0.113(1)	0.150(10)	0.143(8)	0.174(8)	0	0	0.013(6)	
4c O1	0.10543(5)	0.46321(4)	0.25	0.998(1)	0.346(8)	0.356(6)	0.320(6)	0	0	0		
8d O2	0.19497(4)	0.20015(3)	0.55449(2)	1.000(1)	0.365(6)	0.372(4)	0.419(5)	0.070(4)	0.069(4)	0.084(4)		
4c H	0.288(14)	0.143(13)	0.25	0.010(3)	3(1)							

Notes: Initial atomic coordinates in the refinements were taken from Horiuchi et al. (1987). See the text for the refinement procedure in detail.
Hydrogen substitution mechanism

In previous works using neutron diffraction, we successfully determined the full structure parameters of several dense hydrogen-bearing minerals occurring in the mantle transition zone, including both nominally hydrous and anhydrous types (Purevjav et al. 2014, 2016, 2018, 2020). It has been demonstrated that octahedrally coordinated Mg\(^{2+}\) or Fe\(^{2+}\), as well as tetrahedrally coordinated Si\(^{4+}\), were removed to exchange for hydrogen. That is, hydrogen clusters are generated around the sites originally filled by Mg\(^{2+}\), Fe\(^{2+}\), and Si\(^{4+}\) cations. On the other hand, in the bridgmanite structure in the lower mantle, these major cations remain even after the hydration reaction. In other words, it is preferred to avoid creating any cation vacancy as well as hydrogen clusters. By simply referring to the total cation occupancy of 1.01 and its valence charge of 2.06 in the A site, it is clear that hydrogen clustering around such a fully filled site with such an excess charge is energetically unfavorable. We thus conclude that one hydrogen around one filled cation is the unique solution most consistent with the neutron diffraction result (Fig. 6; Table 2). On the other hand, the total cation charge of 3.94 in the B site must be compensated by such an addition of hydrogen around oxygen anions surrounding the site. Since Al\(^{3+}\) causes the smaller charge in the B site, the major hydrogen exchange reaction in (Fe,Al)-bearing bridgmanite must be (1) Al\(^{3+}\) and H\(^{+}\) simultaneously exchanging for Si\(^{4+}\) in the B site (Muir and Brodholt 2018; Townsend et al. 2016). We note that the addition of hydrogen only increases the total cation charge to 5.96, which is still smaller than the total anion charge of 6.00. The origin of the remaining difference (0.04 per formulation) is still not clear; it is not reasonable to assume a far larger concentration of hydrogen in this site, as explained later. While we may ascribe some fraction of this difference by possible uncertainty of EPMA analysis and Mössbauer results, further research is necessary to solve this issue of the missing cation valence charge.

Hydrogen concentration

To provide a reliable hydrogen concentration in aluminous bridgmanite, which has been greatly debated so far (Fu et al. 2019; Litasov et al. 2003; Liu et al. 2021; Murakami et al. 2002), and also to evaluate the technical limit of single-crystal neutron diffraction for a trace amount of hydrogen, we finally compare and discuss the concentration values obtained by neutron diffraction and SIMS schemes to each other. Our SIMS results show that the hydrogen site occupancy is 0.010(±0.003), which corresponds to its bulk concentration of 870(±260) ppm (Fig. 5). On the other hand, our neutron diffraction results show that single-crystal neutron diffraction can be an alternative means for a quantitative evaluation of hydrogen concentration as low
as 900 ppm = 0.09 wt% of H$_2$O. We also note that our infrared results suggest the existence of minor hydrogen site(s), which were not revealed in the analysis of neutron diffraction data, but could still be detected in the SIMS analysis results. Further neutron diffraction research using even larger crystals with significantly larger volumes could be useful to address other remaining questions in hydrated bridgmanite.

Implications and Conclusions

In this study, we have determined the full crystallographic parameters of hydrous (Fe,Al)-bearing bridgmanite, including its hydrogen site position and occupancy, using the TOF Laue neutron diffraction scheme. The diffraction experiments proved successful due to the use of large and high-quality bridgmanite crystal synthetically grown in a nearly water-saturated environment. Together with the complementary dataset of polarized infrared spectroscopy, our results show that both the hydroxyl covalent bond and the hydrogen bond are directed nearly parallel to the crystallographic b-axis. The water concentration in bridgmanite has been quantitatively evaluated by SIMS analysis, in addition to the neutron diffraction scheme. These results for water concentration are self-consistent and complementary to each other, showing that neutron diffraction can be used to detect its trace amount as low as \sim0.1 wt% H$_2$O.

It was demonstrated that hydrogen is incorporated into the bridgmanite structure via the coupled exchange reaction of H$^+$ and Al$^{4+}$ for Si$^{3+}$ (H$^+$ + Al$^{4+}$ \leftrightarrow Si$^{3+}$), which does not require the presence of a cation vacancy. That is, hydration in bridgmanite is not accompanied with the creation of any vacancies or any hydrogen clusters, which is in marked contrast to the previously reported hydrogen substitution mechanisms in hydrous minerals in the upper mantle, such as wadsleyite, ringwoodite, and DHMS phase E (Purevjav et al. 2014, 2016, 2018, 2020; Sano-Furukawa et al. 2011; Tomioka et al. 2016). We consider that this contrast is due to the densely packed nature of the bridgmanite structure, where larger numbers of oxygen anions coordinate a single cation. Therefore, it is energetically unfavorable to remove such a cation to create a vacancy while keeping the structure. Multiple hydrogen occupancy within one vacant site (Purevjav et al. 2014, 2016) or creation of hydrogen clusters (Purevjav et al. 2018) are prohibited in the structure of bridgmanite without vacancies, implying that its hydrogen concentration is much more limited than the upper mantle minerals, which can have numerous cation vacancies. We thus reinforce the prevailing concept that the upper mantle, including the transition zone, keeps more water than the lower mantle (Karato et al. 2020). In addition, the absence of cation vacancy in hydrous bridgmanite in the lower mantle is important for considering its rheological behavior. We confirmed the result of Muir and Brodholt (2018) by first principle calculation, where hydration of bridgmanite cannot promote hydrolytic weakening because the prevailing Al$^{4+}$ + H$^+$ coupling mechanism does not create any cation vacancies.

It had been previously proposed that the geometry of chemical bonding around hydrogen atoms in the hydrogen-bearing deep-mantle minerals is determined with high accuracy by using smaller d-spacings in the TOF single-crystal experiments (Okuchi et al. 2015). Our study here demonstrates that the distances of covalent and hydrogen bonding and the angle between them can be measured even for the trace amount of hydrogen in the bridgmanite single crystal. This result opens a new window of research opportunity to analyze hydrogen positions and concentrations in other deep-mantle nominally anhydrous minerals by making full use of such neutron diffraction instruments. This type of future study can help understand the hydrogen substitution mechanism and water solubility in a wide variety of minerals in the deep Earth.

Acknowledgments

We acknowledge E. Ito at IPM for technical suggestions in high-pressure synthesis, Y. Yachi at IPM for supporting EPMA analysis, I. Miyagi at National Institute of Advanced Industrial Science and Technology for providing natural amphibole standard for SIMS, X. Wang at SNS for supporting neutron data analysis, and Wenli Bi and Ercan Alp at Argonne National Laboratory for Mössbauer analysis.

Funding

This work was supported by the Japan Society for the Promotion of Science (Post-doctoral Fellowship for Research in Japan Grant Number P17331, and KAKENHI Grant Numbers 17H01172, 18K18795, 18H04468, 20H01965 and 21H04860). J.F.L. acknowledges support from the Geophysics Program and the Cooperative Studies of The Earth’s Deep Interior Program (CSEDH) of the National Science Foundation (EAR-2001381, EAR-1916941). A portion of this research was supported through the JUSEP at the Joint Use Program at the Kobe Core Center Open Facility System (KOFOS) under the MEXT foundation, and by the collaboration research project of Integrated Radiation and Nuclear Science, Kyoto University (R3148, R4011, and R5007).

References Cited

Huurner, D.R. and Fei, Y. (2012) Support from the Geophysics Program and the Cooperative Studies of The Earth’s Deep Interior Program (CSEDH) of the National Science Foundation (EAR-2001381, EAR-1916941). A portion of this research was supported through the JUSEP at the Joint Use Program at the Kobe Core Center Open Facility System (KOFOS) under the MEXT foundation, and by the collaboration research project of Integrated Radiation and Nuclear Science, Kyoto University (R3148, R4011, and R5007).

Purjav et al.: Hydrogen in the Lower-Mantle Bridgmanite

Manuscript received June 20, 2022
Manuscript accepted August 6, 2023
Accepted manuscript online August 18, 2023
Manuscript handled by Jennifer Kung

Endnote
1Deposit item AM-24-66880. Online Materials are free to all readers. Go online, via the table of contents or article view, and find the tab or link for supplemental materials. The CIF has been peer-reviewed by our Technical Editors.