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Abstract

Ferromagnesite [(Mg,Fe)CO3] has been proposed as a candidate host mineral for carbon in the 
Earth’s mantle. Studying its physical and chemical properties at relevant pressures and temperatures 
helps our understanding of deep-carbon storage in the planet’s interior and on its surface. Here we 
have studied high-pressure vibrational and elastic properties of magnesian siderite [(Mg0.35Fe0.65)CO3] 
across the electronic spin transition by Raman and X‑ray diffraction spectroscopies in a diamond-anvil 
cell. Our results show an increase in Raman shift of the observed lattice modes of magnesian siderite 
across the spin transition at 45 GPa as a result of an ∼8% unit-cell volume collapse and a 10% stiffer 
lattice (higher bulk modulus). C-O bond lengthening in the strong, rigid (CO3)2– unit across the spin 
transition contributes to a competitive decrease in Raman shift, most evident in the Raman shift de-
crease of the symmetric stretching mode. Combined vibrational and elastic results are used to derive 
the mode Grüneisen parameter of each mode, which drops significantly across the transition. These 
results suggest that the low-spin state has distinctive vibrational and elastic properties compared to the 
high-spin state. Analyses of all recent experimental results on the (Mg,Fe)CO3 system show no appre-
ciable compositional effect on the transition pressure, indicating weak iron-iron exchange interactions. 
Our results provide new insight into understanding the effects of the spin transition on the vibrational, 
elastic, and thermodynamic properties of (Mg,Fe)CO3 as a candidate carbon-host in the deep mantle.

Keywords: Ferromagnesite, spin transition, X‑ray diffraction, Raman spectroscopy, diamond-
anvil cell

Introduction

Carbonates are the main form of carbon-bearing minerals 
on the Earth’s surface and can be transported deep into Earth’s 
mantle through subduction of oceanic lithosphere (Javoy 1997; 
Seto et al. 2008). Owing to the extremely low solubility of carbon 
in mantle silicates (Shcheka et al. 2006), carbon from plate sub-
duction and primordial origins may exist primarily in accessory 
carbon compounds in the deep mantle. With increasing depth in 
the Earth’s interior, these potential accessory deep-carbon hosts 
can exist in various forms such as CO2 and hydrocarbon-rich 
fluids/melts, carbonates (calcite, dolomite, magnesite), diamond 
and graphitic compounds, and iron carbides, among others (e.g., 
Li and Fei 2003; Dasgupta and Hirschmann 2010; Kaminsky 
and Wirth 2011). Several studies have suggested that magnesite 
(MgCO3) could become the main host for carbon at the expense 
of calcite and dolomite at mantle conditions (Katsura and Ito 
1990; Isshiki et al. 2004; Litasov et al. 2008). Although the redox 
state, amount of carbon, and potential existence of metallic iron 
in the deep Earth can all affect the stability of accessory carbon 
phases (Dasgupta and Hirschmann 2010), the observations of 
some carbonate inclusions in diamonds from the lower mantle 
have further supported magnesite as a major host of deep mantle 
carbon (Pal’yanov et al. 1999; Stachel et al. 2000; Brenker et al. 

2007). Considering the average Fe/Mg molar ratio of ~0.12 in 
the Earth’s mantle (McDonough and Sun 1995), the composition 
of carbonates in the mantle is likely to lie between magnesite 
(MgCO3) and siderite (FeCO3); these two end-member phases 
are known to form a continuous, solid solution, (Mg,Fe)CO3. 
However, previous studies have shown that iron partitions 
strongly into coexisting silicates rather than into magnesite at 
relevant mantle pressure-temperature conditions (Ghosh et al. 
2009; Stagno and Frost 2010; Rohrbach and Schmidt 2011). 
Nevertheless, studying the properties of Fe-bearing magnesite 
helps to elucidate deep-carbon storage in the mantle. Hereafter, 
the solid-solution component in the MgCO3-FeCO3 series is 
correctly referred to as ferromagnesite for the Mg-rich portion, 
or magnesian siderite for the Fe-rich portion of (Mg,Fe)CO3, 
instead of plainly “siderite.”

Recent experimental and theoretical studies have shown that 
magnesite remains chemically stable at the high pressure-temper-
ature (P-T) conditions of the deep mantle, even though a number 
of structural transitions in MgCO3 have been reported (Biellmann 
et al. 1993; Isshiki et al. 2004; Oganov et al. 2008). The P-T con-
ditions required to cause chemical dissociation and decarbonation 
of magnesite far exceed those present in the deep mantle, thus 
providing a possible storage mechanism for carbon in the lower 
mantle (Biellmann et al. 1993; Isshiki et al. 2004). An electronic 
high-spin (HS) to low-spin (LS) transition of Fe2+ is reported to 
occur in ferromagnesite at ambient temperature and ~40–45 GPa * E-mail: afu@jsg.utexas.edu
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by high-pressure X‑ray emission and X‑ray diffraction studies, 
as well as theoretical calculations (Mattila et al. 2007; Shi et al. 
2008; Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010). The 
spin transition causes a volume collapse of ~6–10% and color 
changes (Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010). 
The low-spin ferromagnesite exhibits a smaller unit-cell volume 
than magnesite at corresponding pressures, suggesting that iron-
rich magnesite may become more stable than magnesite at high 
P-T. However, although ferromagnesite is known to be stable 
up to at least 47 GPa and 2000 K (Santillan and Williams 2004) 
and up to 90 GPa at ambient temperature (Lavina et al. 2010a), 
it has been recently proposed that ferromagnesite transforms into 
an assemblage of a new high-pressure phase with three-membered 
rings of corner-sharing (CO4)4– tetrahedra, together with magnesite 
and nano-diamonds (Oganov et al. 2008; Boulard et al. 2011). 
Furthermore, magnesite has been reported to undergo a structural 
phase transition at relevant P-T conditions of the lowermost mantle 
(Isshiki et al. 2004; Oganov et al. 2008).

Thus far, ferromagnesite is the only common deep-mantle 
carbonate mineral containing iron known to undergo the spin-
pairing transition. Therefore, strong interest lies in the effects of 
the spin transition on the behavior of this deep mantle carbonate, 
with respect to its thermodynamic, elastic, and vibrational prop-
erties. Of particular interest are the effects of the spin transition 
of iron in ferropericlase [(Mg,Fe)O], the second most abundant 
mineral in the lower mantle, at 40–60 GPa and room temperature 
[see Lin and Tsuchiya (2008) for a recent review]. The known 
effects of the transition on the properties of ferropericlase, such 
as elasticity, electrical, and thermal conductivity, and deforma-
tion, have dramatically affected our understanding of the seismic, 
geochemical, and geomagnetic observations of the lower mantle 
(e.g., Lin et al. 2005, 2007; Speziale et al. 2005, 2007; Fei et al. 
2007a; Crowhurst et al. 2008; Marquardt et al. 2009; Lin et al. 
2009; Komabayashi et al. 2010). Experimental studies on the 
effects of the spin transition on the properties of ferromagnesite 
can thus provide more insight into understanding the effects of 
the spin transition in the lower-mantle ferropericlase. However, 
experiments need to be conducted on ferromagnesite with respect 
to the transition effects on the vibrational, elastic, and thermody-
namic properties (Gillet et al. 1993; Zhang et al. 1998; Lavina 
et al. 2009, 2010a, 2010b; Nagai et al. 2010).

Here we have studied high-pressure Raman and X‑ray dif-
fraction spectra of magnesian siderite (Mg0.35Fe0.65)CO3 across 
the spin transition in a diamond-anvil cell (DAC). The high 
iron content in the sample allows us to see the effects of the 
spin transition on the vibrational and elastic parameters more 
clearly, although ferromagnesite is likely to contain a much 
smaller amount of iron at relevant P-T conditions of the deep 
mantle (Ghosh et al. 2009; Stagno and Frost 2010; Rohrbach and 
Schmidt 2011). We observed significant changes in vibrational 
Raman bands across the transition, whereas combined Raman 
and X‑ray diffraction results allowed for the evaluation of the 
Grüneisen parameter for the high-spin and low-spin states. By 
studying the vibrational and elastic properties of magnesian 
siderite at high pressures, as well as the effect of composition 
on the spin transition in iron, we aim to provide new insight 
into the vibrational, elastic, and thermodynamic behavior of the 
candidate carbonate in the deep mantle.

Experimental methods

A natural magnesian siderite sample was obtained from the Vargas Gem and 
Mineral Collection of the Jackson School of Geosciences at the University of Texas 
at Austin (collection number: V3817). Based on electron microprobe analyses, the 
sample has a composition of (Mg0.33Fe0.65Mn0.02)CO3, together with less than 1% 
of minor calcium impurity. For simplicity on the following discussion of the spin 
transition of iron, the composition is mostly presented as (Mg0.35Fe0.65)CO3, with 
the minor Mn content counted toward the total Mg content. The sample is a light 
yellowish-brown mineral in plain light that exhibits a rhombohedral habit with 
perfect {101} cleavage. Both single-crystal and powder X‑ray diffraction analyses 
confirmed the calcite crystal structure (space group: R3c) with lattice parameters, 
a = 4.6742 (±0.0010) Å and c = 15.2788 (±0.0050) Å, under ambient conditions. 
In this structure, (CO3)2– anions are located at corners of the distorted octahedron 
with Fe2+ or Mg2+ cations, which form a unit cell that is essentially a distorted halite 
(or ferropericlase) cell along [111] direction (Wells 1984).

For Raman spectroscopic experiments, a piece of the single crystal with a 
thickness of 20 µm and a diameter of ~45–50 µm was cleaved off along the (101) 
rhombohedral plane of the original specimen and used as the starting sample. A 
rhenium gasket was pre-indented by a pair of diamond anvils having 200 µm flat 
culets to a thickness of 25 µm. A hole of 90 µm in diameter was drilled in the pre-
indented gasket and used as a sample chamber. The starting sample was loaded into 
the sample chamber of a DAC with the (101) crystal plane faced toward the culet, 
together with a few ruby spheres as the pressure calibrant (Mao et al. 1978). Neon 
was loaded into the sample chamber as the pressure medium (Fei et al. 2007b) using 
a newly built high-pressure gas loader in the Mineral Physics Laboratory of the 
University of Texas at Austin. Before the Ne loading, the gas loading system was 
evacuated for 30 min to prevent any air and moisture contamination on the sample. 
The Raman system in the Mineral Physics Laboratory used for the experiments is 
equipped with a Coherent Verdi V2 laser with a 532 nm wavelength, an electron 
multiplying charge-coupled device (EMCCD), and a Shamrock spectrometer from 
Andor Technology. The laser power was limited to ~50 mW to avoid overheating of 
the sample. Each Raman spectrum was collected with an exposure time of ~15 min 
to ensure quality data analyses. Pressure uncertainties were calculated from multiple 
measurements from the ruby spheres before and after each spectrum were taken.

For X‑ray diffraction experiments, the sample was ground to micro-sized 
powder, which was then slightly pressed to form a disk; caution was taken not to 
grind the sample too hard as we had noticed that the sample may become partially 
amorphous if extreme grinding was applied. A small powder disk with a thickness 
of 18 µm and a diameter of ~45–50 µm was loaded into the sample chamber having 
a thickness 25 µm and diameter of 90 µm in a DAC, together with micro-sized Au 
powder as the pressure calibrant (Fei et al. 2007b). Neon was also loaded into the 
sample chamber using the same aforementioned loading procedures. High-pressure 
X‑ray diffraction experiments were conducted at the 13IDD beamline of the 
GSECARS of the Advanced Photon Source (APS), Argonne National Laboratory 
(ANL). A monochromatic X‑ray beam with a wavelength of 0.3344 Å was focused 
down to ~5 µm in diameter at the sample position, whereas the diffraction patterns 
were collected by a MAR CCD. Diffraction patterns were integrated using Fit2D 
software, and pressures and pressure uncertainties were calculated from the Au 
pressure calibrant using a third-order Birch-Murnaghan equation of state (BM EoS) 
and standard error propagation analyses (Birch 1978; Fei et al. 2007b).

Results and data analyses

Raman spectra of the sample were measured in 1–3 GPa inter-
vals up to 73 GPa at ambient temperature (Fig. 1). Four Raman 
bands were observed and have been identified as translational 
(T), librational (L), in-plane bend (ν4), and symmetric stretch (ν1) 
modes from magnesian siderite according to previous studies 
(e.g., Rutt and Nicola 1974; White 1974; Edwards et al. 2005; 
Gunasekaran et al. 2006; Rividi et al. 2010; Clark et al. 2011; 
Santillan et al. 2005; Kaabar et al. 2011) (Figs. 1 and 2), discussed 
further in the Discussion section. Two other Raman active modes, 
the anti-symmetric stretch (ν3) and out-of-plane bend (2ν2), were 
reported previously (Rividi et al. 2010) but were not observed 
in this study due to the diamond windows. Measured Raman 
spectra were analyzed using Origin Pro 8 commercial software, 
in which the Raman bands were fit with a Lorentzian function 
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(Figs. 1 and 3). The Raman shifts of the modes increased almost 
linearly with increasing pressure, but changed dramatically at 
45 GPa. The transition pressure is consistent with the previously 
observed spin transition in ferromagnesite (Mattila et al. 2007; 
Shi et al. 2008; Lavina et al. 2009, 2010a, 2010b; Nagai et al. 
2010). All modes increased in Raman shift at 45 GPa except 
for the internal symmetric mode, which experienced a decrease 
across the transition (Fig. 3; Table 1). These Raman bands were 

Figure 1. Representative Raman spectra of magnesian siderite 
(Mg0.33Fe0.65)CO3 at high pressures. The Raman modes are labeled 
according to the nomenclatures used in the literature (e.g., Rividi et al. 
2010). T = translational lattice mode; L = librational lattice mode; ν1 
= symmetric stretching internal mode; ν4 = in-plane bending internal 
mode. The spin transition of Fe2+ at 45 GPa causes significant changes 
in the spectral features (see Fig. 2). The changes are most evident in the 
strongest symmetric stretching internal mode (ν1), which is split within 
the transition and exhibits a satellite band (ν1′) after the transition. The 
broad band at ~500–600 cm–1 may be associated with the vibration 
of a Fe-O band (Buzgar and Apopei 2009). F denotes fluorescence 
background from sample and diamonds.

Figure 2. Modeled vibrational modes T, L, ν4, and ν1 (same order left to right in figure) observed via Raman spectroscopy from magnesian 
siderite (after Rividi et al. 2010). Atomic radii are approximately to scale. However, bond lengths as well as c/a axis ratio has been modified to fit 
the space given. Representative unit-cell structure relative to these modes is found in Figure 5. (Color online.)
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Figure 3. Raman shifts of magnesian siderite (Mg0.35Fe0.65)CO3 
at high pressures. The spin transition of Fe2+ in the sample at 45 GPa 
causes significant increases in the Raman shifts of the T, L, and ν4 modes, 
whereas the Raman shift of the symmetric stretching internal mode (ν1) 
decreases across the transition. The effects of the spin transition and 
pressure on the shifts are tabulated in Table 1. Error bars are typically 
smaller than symbols and are not shown.

clearly split into two bands within the transition, suggesting the 
presence of two species of differing unit-cell volume, correspond-
ing to either the HS or LS domain; this splitting feature was most 
prominent in the symmetric mode, which also displayed a satel-
lite peak (ν1′ ) at a slightly higher Raman shift after the transition 
(Fig. 1). Raman shifts of each mode as a function of pressure can 
be well modeled by a linear fit before and after the transition, 
respectively (Fig. 3; Table 1). Once the spin transition has taken 
place, the changes in Raman shift are again linear functions of 
increasing pressure in the lower-spin state, although the slopes 
significantly decrease by as much as 50% (Table 1).

X‑ray diffraction patterns were collected from the sample in 
1–3 GPa intervals up to 80 GPa at 300 K (Fig. 4). The magne-
sian siderite unit-cell parameters drop significantly at 45 GPa, 
consistent with previous studies on the spin transition (Mattila 
et al. 2007; Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010) 
(Figs. 5 and 6). The pressure-volume relation in the high-spin 
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Table 1. 	 Modeled vibrational parameters of magnesian siderite (Mg0.35Fe0.65)CO3 at high pressures
Raman mode	 dν/dP	 Raman shift vs. P	 ∆ν (cm–1)	 Mode Grüneisen	 Mg effect on	 ∆νo (cm–1)
		  (cm–1/GPa)			   parameter (γi)	 Raman shift
T	 HS	 2.51 (±0.10)	 ν = 2.51·P + 200	 62 (±10)	 1.96 (±0.03)	 ν = 0.26·Mg no. + 186.6	 26 (±3)
	 LS	 1.86 (±0.16)	 ν = 1.86·P + 291		  1.69 (±0.03)		
L	 HS	 3.64 (±0.18)	 ν = 3.64·P + 315	 58 (±16)	 1.87 (±0.03)	 ν = 0.40·Mg no. + 289.4	 40 (±4)
	 LS	 1.64 (±0.17)	 ν = 1.64·P + 464		  1.08 (±0.02)		
ν4	 HS	 1.49 (±0.06)	 ν = 1.49·P + 735	 50 (±7)	 0.41 (±0.01)	 ν = 0.06·Mg no. + 733.7	 6 (±1)
	 LS	 1.07 (±0.08)	 ν = 1.07·P + 804		  0.44 (±0.01)		
ν1	 HS	 2.17 (±0.07)	 ν = 2.17·P + 1093	 –17 (±7)	 0.39 (±0.01)	 ν = 0.08·Mg no. + 1087.3	 8 (±1)
	 LS (ν1)	 0.94 (±0.09)	 ν = 0.94·P + 1132		  0.30 (±0.01)		
	 LS (ν1′)	 1.01 (±0.06)	 ν = 1.01·P + 1116		  0.31 (±0.01)	 –	 –
Notes: HS = high-spin state; LS = low-spin state; dν/dP = pressure derivative of the Raman shift. ∆ν represents the difference of the Raman shifts between the 
low-spin and high-spin state at 45 GPa. Raman shift difference (∆νo) between MgCO3 and FeCO3 systems under ambient conditions are also listed for comparison 
(after Rividi et al. 2010). Mg no. = [100·Mg/(Mg+Fe)] is the ratio of Mg in the solid solution system in percentage. The error bars represent one standard deviation 
in experimental uncertainties in our study. 
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2011). Based on these results, the lower-frequency, lower-inten-
sity band at 190 cm–1 was assigned to the translational mode (T) 
and the high-frequency, higher-intensity band at 298 cm–1 to the 
librational mode (L) (Figs. 1–2; Table 1). The internal vibrational 
symmetric stretch mode (ν1) produces the most intense Raman 
band at 1088 cm–1, whereas another internal first-order band at 
734 cm–1 corresponds to the in-plane bend (or symmetric bend) 
mode (ν4) (White 1974) (Figs. 1–2; Table 1).

Figure 4. Representative angle-dispersive X‑ray diffraction spectra 
of magnesian siderite (Mg0.35Fe0.65)CO3 at high pressures. Gold power 
(Au) was used as the pressure calibrant (Fei et al. 2007b), whereas 
neon (Ne) was used as the pressure medium. The occurrence of the spin 
transition of Fe2+ in the sample at 45 GPa causes the diffraction peaks to 
split between the high-spin and low-spin states, indicating two distinct 
volumes. Incident X‑ray wavelength λ = 0.3344 Å.

and low-spin states, respectively, has been fitted to the Birch-
Murnaghan EoS (Birch 1978) to derive the bulk modulus at 
ambient pressure (K0) and its pressure derivative (K0′)
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where P is pressure, V is the unit-cell volume, and 0 denotes 
ambient conditions (Fig. 7; Table 2). The bulk modulus, at a 
given pressure, (K) is calculated from the derived K0 and K0′, 
using the BM EoS. Linear incompressibility of each spin state 
along each unit-cell axis, a or c, is derived from fitting the data 
to an extended Birch-Murnaghan EoS (Meade and Jeanloz 1990; 
Liu et al. 2003) (Fig. 6; Table 2), in which the Eulerian finite 
strain (f) is expressed as
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respectively.

Discussion

Lattice vibration across the spin transition
The measured Raman shifts of magnesian siderite 

[(Mg0.35Fe0.65)CO3] at ambient conditions lie between two end-
members, magnesite and siderite (Table 1). The rhombohedral 
magnesian siderite unit cell consists of (CO3)2– anions and diva-
lent cations (Mg2+ and Fe2+), similar to the end-member carbon-
ates. Because Fe2+ randomly substitutes for Mg2+ in magnesian 
siderite, there is no loss of rotational symmetry (Bischoff et al. 
1985). Via factor group analysis, members of a solid solution 
are predicted to have Raman spectra similar to those of the end-
members but with a continuous shift in wavenumbers (White 
1974). Previous studies on Raman shifts of carbonates have at-
tributed low-wavenumber bands to lattice vibrational modes and 
high-wavenumber bands to internal vibrational modes (e.g., Rutt 
and Nicola 1974; White 1974; Edwards et al. 2005; Gunasekaran 
et al. 2006; Rividi et al. 2010; Clark et al. 2011; Kaabar et al. 
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Replacing the sixfold-coordinated Mg2+ (ionic radius = 0.68 
Å) with the larger Fe2+ (high-spin ionic radius = 0.74 Å) (Shan-
non and Prewitt 1969), at ambient conditions, increases the 
interatomic distances between the (Mg2+, Fe2+) cation and the 
(CO3)2– anion in the unit cell of ferromagnesite, decreasing the 
vibrational frequency (e.g., Rutt and Nicola 1974; White 1974). 
This has been shown to account for most, if not all, of the range 
of Raman shifts in the MgCO3-FeCO3 solid solutions (Rividi et 
al. 2010) (Tables 1–2). Indeed, the Raman shift values for the 
lattice modes show displacement to higher values following the 
increase of magnesium content in ferromagnesite (Table 1). This 
compositional effect is most prominent in the external lattice 
modes (T and L), but much less evident in the internal modes (ν1 
and ν4), as the covalent C-O bonds of the rhombohedral (CO3)2– 
group are poorly sensitive to cation substitutions (White 1974).

In combination with the X‑ray diffraction results, the sharp 
Raman shift increase in the T, L, and ν4 modes and subtle drop 
in ν1 modes at 45 GPa can be well explained as a result of the 
spin transition. The transition causes a decrease in volume and 
in octahedral bond distance, an increase in bulk modulus, and a 
slight increase in the C-O bond length of the (CO3)2– units (Lavina 
et al. 2009, 2010a, 2010b; Nagai et al. 2010). That is, the low-
spin state exhibits a stiffer unit-cell lattice and smaller bond dis-
tances between neighboring (CO3)2– units than the end-member 
magnesite (Figs. 5–7) (Lavina et al. 2009, 2010a, 2010b; Nagai 
et al. 2010). At ambient conditions, high-spin Fe2+ substitution 
increases the unit-cell size of magnesite, causing a vibrational 
frequency decrease. However, low-spin Fe2+ is a smaller cation 
than Mg2+, decreasing the unit-cell volume to smaller than that 
of magnesite as well as high-spin magnesian siderite, thereby 
contributing to an increase in Raman shift over the transition 
(Lavina et al. 2009) (Fig. 7). For the high-spin state, structural 
refinements on single-crystal magnesian siderite also showed 
that over 45 GPa, the strong C-O bond initially decreases in 

Figure 5. (a) Visual representation of the unit cell of magnesian 
siderite. The percentage of volume collapse after the spin transition at 
45 GPa is also shown for c and a axes. Unit parameters are based on our 
results at 45 GPa; atom positions are taken from Lavina et al. (2010a, 
2010b). (b) Rhombohedral representation of the crystal structure of 
magnesian siderite. The motions of the (CO3)2– units relative to the 
central cation that result in the observed vibrational modes can be found 
in Figure 2. (Color online.)
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Figure 6. Lattice parameters of magnesian siderite (Mg0.35Fe0.65)CO3 
at high pressures. Ratios of the unit-cell constants, a and c, as a function 
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transition of Fe2+ in the sample at 45 GPa causes these cell parameters to 
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shown. c/c0 and a/a0 values are shown in the left vertical axis, whereas 
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length by only 2–3% (0.03 Å), but experiences an appreciable 
lengthening with pressure increase after the transition (Lavina et 
al. 2010a). Therefore, there are two competing factors present: 
the unit-cell stiffness and bulk modulus increases, and volume 
decrease, contribute to vibrational frequency increases; the 
C-O bond lengthening along the a axis and within the planar 
(CO3)2– unit facilitates a vibrational frequency decrease. The 
lattice modes (T, L) are strongly coupled to the lattice volume 
and are prominently affected by the volume collapse, showing 
increases in Raman shift over the transition. The internal modes 
(ν4, ν1) are more susceptible to the C-O bond lengthening; 
however, only the symmetric stretch experiences a decrease 
in Raman shift, showing that the bond lengthening effect wins 
over the lattice contraction effect. The lattice contraction effect 
overcompensates for the frequency decreasing effects of the 
bond lengthening, effectively increasing the Raman shift of the 
in-plane bend. The small, broad satellite peak (ν1′) could be as-
signed to the effect of increased proximity (and thus magnitude 
of the electronic interaction) between neighboring (CO3)2– units 
in the low-spin state, leading to a range of Raman frequencies 
(see ν1 peak broadening after the transition in Fig. 1) caused by 
in-phase and out-of-phase vibrations of adjacent (CO3)2– units.

Lattice parameters and equation of state
Analyses of the compression data using the BM EoS show 

that the high-pressure, low-spin state exhibits a higher modulus 
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than the low-pressure, high-spin state; the bulk modulus jumps 
by ~9.8% across the transition in (Mg0.35Fe0.65)CO3 (Figs. 8 and 
9). Such effects of the spin transition on incompressibility have 
also been reported to occur in lower-mantle ferropericlase (e.g., 
Lin et al. 2005, 2009; Speziale et al. 2007; Marquardt et al. 2009; 
Komabayashi et al. 2010). High-spin magnesian siderite displays 
a similar incompressibility to magnesite before the transition (Fig. 
9b), indicating that the addition of iron has negligible effects on 
incompressibility. The low-spin state of magnesian siderite is 
~5–7% stiffer than magnesite at similar conditions (Fiquet et 
al. 2002) (Fig. 9). The unit-cell volume of high-spin magnesian 
siderite is ~4% higher than that of magnesite, but drops by 5.7% 
at the spin transition (Fig. 5); that is, low-spin magnesian siderite 
is ~2% smaller in unit-cell volume than magnesite (Fig. 9). The 
smaller-volume, low-spin ferromagnesite has been suggested to in-
crease in stability in the lower mantle, and could therefore become 
a candidate accessory mineral for deep-carbon storage (Lavina 
et al. 2009). However, ferromagnesite has been recently shown 
to transform into an assemblage of compounds at lower-mantle 
conditions (Boulard et al. 2011). Thus, it is yet to be understood 
how the spin transition affects the phase diagram of ferromagnesite 
at relevant conditions of the lower mantle.

The c and a axes show strong anisotropic compression with 
the c axis being much more compressible than the a axis. Across 
the spin transition, the length of the c axis decreases by 3.1%, the 
a axis by 2.0%, and the c/a ratio by 1.1% (Figs. 5 and 6). The 
axial linear incompressibility parameters along each one of the 
two unit-cell axes, a or c, are fitted with the extended Eulerian 
finite-strain EoS using the third-order BM EoS (Birch 1978; Liu 
et al. 2003). For the a axis, the high-spin state has K0 = 210 (±7) 
GPa with K′0 = 8.2 (±0.5), whereas the low-spin state has K0 = 212 
(±9) GPa with K′0 = 8.6 (±0.7). For the c axis, the high-spin state 
has K0 = 64.1 (±0.7) GPa with K′0 = 2.52 (±0.03) and the low-spin 
state has K0 = 50.6 (±1.4) GPa with K′0 = 3.49 (±0.08).

Structurally, the planar (CO3)2– units are oriented perpendicular 
to the c axis and the individual C-O bonds are aligned parallel to 
the a axis (Fig. 5). The large anisotropy of compression suggests 
that the rigid (CO3)2– units contribute to the highly incompressible 
behavior along the a axis through strong, covalent C-O bonds 
and oxygen repulsion (Lavina et al. 2010b). As discussed earlier, 
space group R3c of carbonates can be described as a distortion 
of the NaCl structure along [111] direction. A convenient param-
eter describing the degree of distortion from the NaCl structure 
is defined as t = 4a/ 2 c, a ratio between the a and c axes (e.g., 
Wells 1984; Fiquet et al. 1994). Whereas most carbonates have t 
values between 0.8 and 0.9, this distortion parameter is equal to 

Table 2. 	 Equation of state parameters of ferromagnesite at high pressures
	 (Fe0.65Mg0.33Mn0.02)CO3	 (Fe0.72Mg0.24Mn0.03Ca0.01)CO3	 (Fe0.12Mg0.87Ca0.01)CO3	 (Fe0.73Mg0.22Mn0.05)CO3

	 This study	 Lavina et al. (2009, 2010a)	 Lavina et al. (2010b)	 Nagai et al. (2010)
	 HS	 LS	 HS	 LS	 HS	 LS	 HS	 LS
V0 (Å3)	 289.1(±0.1)	 267(±2)	 294.4(±0.3)	 263(±3)	 281.0(±0.5)	 –	 293.5(±0.1)	 –
K0 (GPa)	 108(±2)	 127(±5)	 110.1(±0.8)	 148(±12)	 102.8(±0.3)	 –	 120(±3)	 –
K0’	 4.8(±0.2)	 5.1(±0.2)	 4.6(±0.2)	 5	 5.44	 –	 4.3(±0.3)	 –
a (Å)	 4.487 (±0.001)	 4.419 (±0.004)	 4.480 (±0.008)	 4.420 (±0.003)	 4.369 (±0.006)	 4.349 (±0.006)	 4.500 (±0.004)	 4.396 (±0.03)
c (Å)	 13.15 (±0.02)	 12.84 (±0.02)	 13.60 (±0.01)	 13.01 (±0.04)	 13.27 (±0.05)	 13.16 (±0.054)	 13.22 (±0.06)	 12.83 (±0.02)
∆V/V (%)	 8.1(±0.3)	 10.4	 –	 6.5
Notes: The parameters are modeled using the third-order Birch-Murnaghan EoS (Birch 1978). a and c represent the cell parameters calculated from the X-ray diffrac-
tion patterns right before and after the spin transition at 45 GPa. ∆V/V is the percentage of the volume decrease across the spin transition. The error bars represent 
one standard deviation in experimental uncertainties in our study.

one in an ideal NaCl structure (Fiquet et al. 1994). Evaluation of 
the parameter as a function of pressure shows that our magnesian 
siderite has t = 0.86, similar to that of magnesite at ambient condi-
tions (Fiquet et al. 1994). The parameter increases significantly 
with increasing pressure and approaches 0.97 at the spin transition 
pressure of 45 GPa where the slope decreases significantly. That 
is, the spin transition also affects the distortion parameter of the 
magnesian siderite at high pressures. The parameter is almost 
equal to 1 at ~72 GPa (Lavina et al. 2009, 2010a; Nagai et al. 
2010) (Fig. 10). We note that magnesite has a smaller t of 0.96 at 
the same pressure (Fiquet et al. 2002). Thus, this suggests that the 
arrangement of the Fe2+ and (CO3)2– ions in the low-spin magnesian 
siderite at 70–80 GPa is very similar to the ideal NaCl structure. 
Since the c axis is much more compressible than the a axis, the 
distortion parameter eventually is larger than one. This indicates 
that the low-spin magnesian siderite lattice can be described as 
a distortion of the NaCl structure being compressed along [111] 
direction at pressures above ~72 GPa, instead being elongated 
along the direction at lower pressures.

Mode Grüneisen parameter
The combined Raman and X‑ray diffraction results are used 

to derive the mode Grüneisen parameter (γ), an important ther-
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modynamic parameter for characterizing the high P-T behavior 
of planetary materials (Anderson 2000). The measured vibra-
tional frequency (v), as a function of pressure (P) or volume (V), 
represents a mode Grüneisen parameter for the phonon mode 
following the equation (Born and Huang 1954)

γ i i T

i

id v
d V

K
v

dv
dP

= =






ln
ln

.

This parameter links variation in vibrational frequency to 
changes in crystal lattice volume and, as a consequence, to the 
effect of changing temperature on the size or dynamics of the 
lattice (Wagner 2000). The parameter thus reflects not only 
the differing mass and ionic radius of substituting cations in 
magnesian siderite, but also the compression of the carbonate 
ion. The mode Grüneisen parameters for magnesian siderite 
were calculated using the linear fits to the Raman data and the 
derived EoS parameters from the pressure-volume relationship 
(Table 1). The mode Grüneisen parameters of the high-spin state 
for the two external lattice modes (T and L) are 1.96 and 1.87, 
respectively, but these values drop to 1.69 and 1.08 in the low-
spin state. On the other hand, the mode Grüneisen parameters of 
the two internal modes (ν1 and ν4) are much less affected by the 
spin transition (Table 1). These suggest that the low-spin state 
has distinctive vibrational and elastic properties from that of the 
high-spin state (e.g., Shi et al. 2008; Wentzcovitch et al. 2009). 
To calculate the average of the mode Grüneisen parameters (γ) 
meaningfully, one has to weight each mode by the heat capacity 
for that mode, but such information is unavailable for the low-
spin state. The average thermodynamic Grüneisen parameter (γth), 
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which takes all contributions of the parameter into account, can 
also be calculated using the following thermodynamic relation

γ α
ρ

α
ρth

S

P

T

V

K
C

K
C

= =

where ρ is the density, KS and KT are the adiabatic and isothermal 
bulk modulus, respectively, and CP and CV are the heat capacity 
at constant pressure and volume, respectively. Using values of 
α = 2.98 × 10−5 K−1 (Zhang et al. 1998), ρ = 3656 kg/m3 (this 
study), KS = 109 GPa (estimated from this study), and CP = 81.3 
J/(mol·K) (Robie et al. 1984) at 300 K, the thermodynamic Grü-
neisen parameter of the high-spin state is ~1.1. The low-spin state 
is expected to have a lower thermodynamic Grüneisen parameter, 
but data on its thermal expansion coefficient and heat capacity 
are still unavailable.

Pressure-composition correlation
To understand the compositional effect on the spin transition 

in the system, we have plotted all literature transition pressures 
as a function of composition (Mattila et al. 2007; Lavina et al. 
2009, 2010a, 2010b; Nagai et al. 2010) (Fig. 11). Even though 
these studies were carried out under various experimental con-
ditions using different techniques, the transition pressures fall 
on a narrow range between 42 and 50 GPa for almost all of the 
compositional range. The negligible compositional effect on the 
transition pressure in the (Mg,Fe)CO3 system can be explained 
by much longer Fe2+-Fe2+ distances in the structure, separated 
by the (CO3)2– units (Fig. 5). Although the system can contain 
up to 20 at% of Fe2+ in the end-member FeCO3, the Fe2+-Fe2+ 
exchange interactions between distant neighboring Fe2+ atoms 
are below the percolation threshold and have a negligible effect 
on the transition pressure. This is unlike the spin transition in fer-
ropericlase, in which the contribution of the Fe2+-Fe2+ exchange 
interactions in FeO-rich part is known to stabilize the high-spin 
state to much higher pressures (Lin et al. 2006).
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