HW-1: MACONDO EXERCISE (PSI)

In this exercise, we will plot the Macondo well pressures as 1) pressures, 2) overpressures, and 3) equivalent mudweights (e.g. Fig. 2.1).

- 1) Calculate Hydrostatic Pressure and Lithostatic Stress with Depth:
 - a. Fill out Table 2 based on Table 1 and Equations 1, 2, and 3.
- Plot hydrostatic and lithostatic pressure on Figure 1 in terms of 1) Pressure, 2) Excess Pressure, and 3) Equivalent Mudweight.

Parameter	Value and Units
Hydrostatic gradient	$0.44 \frac{PSI}{ft}$
Overburden gradient	$1.0 \frac{PSI}{ft}$
Water Depth	5000 feet
Total Depth	20,000 feet
Reservoir Pressure	12,000 PSI
Reservoir Depth	18,000 feet

Table 1: Parameters for the exercise

To convert pressure (in psi) to equivalent mudweight (in ppg):.052 * Mudweight (PPG) * TVDss (ft) = Pressure(PSI)Eq. 1

$$Mudweight (PPG) = \frac{Pressure (PSI)}{.052*TVD_{ss}(ft)}$$
Eq. 2

$$u^* = u - u_h$$
 Eq. 3

Depth	Hydrostatic (u _h)		Lithostatic (σ _v)		Hydrostatic Effective Stress (o _v - u _h)
feet	PSI	PPG	PSI	PPG	PSI
5000					
8000					
12000					
15000					
18000					
20000					

Table 2: Fill in the hydrostatic pressure and the lithostatic stress at the given depth points.

- 3) Plot the measured reservoir pressure as a point on the same graphs. Reservoir Excess pressure (u*) is calculated from Eq. 3. The equivalent mudweight for the reservoir is calculated from Eq. 2.
- 4) Assume that the well is capped at the seafloor and the well bore is filled with oil of a static pressure gradient equal to 0.25 psi/ft. Plot the pressure from the reservoir to the seafloor assuming a static column of oil fills the wellbore.

 $\text{Oil Gradient} = 0.25 \frac{PSI}{ft}$

Depth	Gas Reservoir Pressures (u _{oil})		Gas Overpressure (u* _{oil}) (u _{oil} - u _h)
feet	PSI	PPG	PSI
5000			
8000			
12000			
15000			
18000			

SPREAD SHEET EXERCISES

- 1) Estimate the pore pressure at the seafloor if the borehole is filled with water, oil, or gas.
 - a. Water =
 - b. Oil =
 - c. Gas =
- 2) Extra Credit: When the well was capped, the actual pressure was 6600 PSI at the well head and the hole was filled with oil (0.25 psi/ft gradient). Estimate the in-situ pressure when the well was first capped. Why do you think this pressure is different from the measured in-situ pressure when the well was drilled (i.e. 12,000 psi)?

HW-1: Crustal GeoFluids © 2021 Flemings