HW-1: MACONDO EXERCISE (PSI) ANSWERS

In this exercise, we will plot the Macondo well pressures as 1) pressures, 2) overpressures, and 3) equivalent mudweights (e.g. Fig. 2.1).

- 1) Calculate Hydrostatic Pressure and Lithostatic Stress with Depth:
 - a. Fill out Table 2 based on Table 1 and Equations 1, 2, and 3.
- 2) Plot hydrostatic and lithostatic pressure on Figure 1 in terms of 1) Pressure, 2) Excess Pressure, and 3) Equivalent Mudweight.

Parameter	Value and Units
Hydrostatic gradient	$0.44 \frac{PSI}{ft}$
Overburden gradient	$1.0 \frac{PSI}{ft}$
Water Depth	5000 feet
Total Depth	20,000 feet
Reservoir Pressure	12,000 PSI
Reservoir Depth	18,000 feet

Table 1: Parameters for the exercise

$$Mudweight (PPG) = \frac{Pressure (PSI)}{.052*TVD_{ss}(ft)}$$
Eq. 2

$$u^* = u - u_h$$

Eq. 3

Depth	Hydrosta	atic (u _h)	Lithosta	tic (σ _v)	Hydrostatic Effective Stress (σ _v - u _h)
feet	PSI	PPG	PSI	PPG	PSI
5000	2200	8.5	2200	8.5	0
8000	3520	8.5	5200	12.5	1680
12000	5280	8.5	9200	14.7	3920
15000	6600	8.5	12200	15.6	5600
18000	7920	8.5	15200	16.2	7280
20000	8800	8.5	17200	16.5	8400

3) Plot the measured reservoir pressure as a point on the same graphs. Reservoir Excess pressure (u*) is calculated from Eq. 3. The equivalent mudweight for the reservoir is calculated from Eq. 2.

Reservoir Presssure $(u_{oil}) = 12,000$ PSI

Reservoir Depth = 18,000 feet $u_h = \rho_w gz$ $u_h(z = 18,000 ft) = 0.44 \frac{psi}{ft} * 18,000 ft = 7920$ PSI.

Reservoir overpressure (u^*) : $u^* = u - u_h$ $u^* = 12,000 - 7920 = 4,080$ *PSI*

Calculate the Equivalent Mud Weight for of the reservoir pressure (Eq. 2)=

Reservoir Pressure in Mud Weight (PPG) $\frac{12,000 PSI}{(.052 * 18,000 ft)} = 12.8 PPG$

4) Assume that the well is capped at the seafloor. Plot the pressure from the reservoir to the seafloor assuming a static column of oil fills the wellbore.

Oil Gradient =
$$0.25 \frac{PSI}{ft}$$

Dopth	Oil Pressure inside casing		Overpressure (u* _{oil})	
Deptil	(u _{oil})		(u _{oil} - u _h)	
feet	PSI	PPG	PSI	
5000	8,750	33.7	6550	
8000	9,500	22.8	5980	
12000	10,500	16.8	5220	
15000	11,250	14.4	4650	
18000	12,000	12.8	4080	

HW-1: Crustal GeoFluids © 2021 Flemings

MALONDO Pressures