HW-9.1: TRAP INTEGRITY

INTRODUCTION:

In this homework, you will explore capillary sealing and stress sealing of buoyant fluids (oil, gas, C02) as discussed in Chapter 9 of (Flemings, 2021). In a previous homework, you calculated the hydrocarbon phase and water phase pressures in the J2 sand of the Bullwinkle oil field. You found the following results:

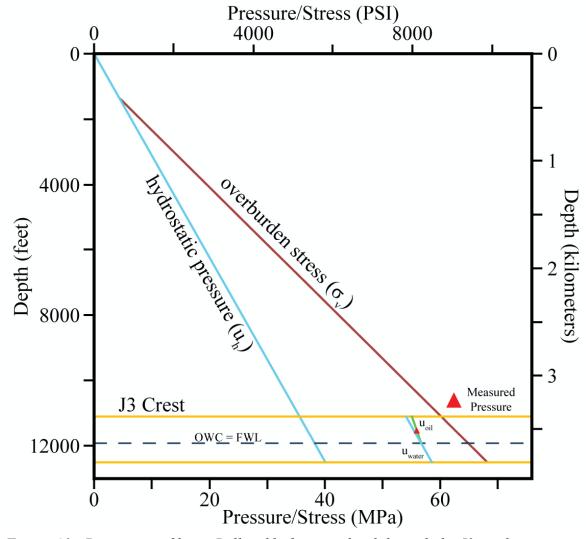


Figure A1: Pressure profiles at Bullwinkle from sea level through the J3 sand.

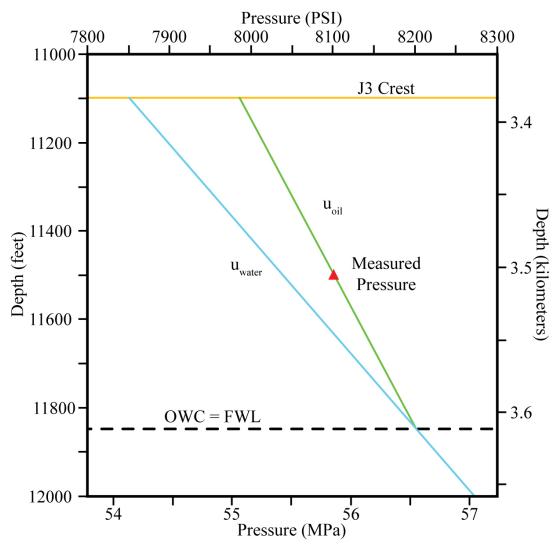


Figure A2: OWC is at 11850 ft, and the FWL is at 11850 ft. At the OWC, $u_{cmig} = 0$ within the reservoir, which means that the depth of the OWC and the FWL are the same.

Table 1

1 00 10 1				
At the top of the J3 Sand				
Pressures	PSI	MPa		
Oil (u _o)	7986	55.06		
Water (uw)	7851	54.13		
Capillary (u _o - u _{aquifer})	134	0.92		
Aquifer Overpressure (u _{aquifer} - u _h)	2689	18.55		
Overburden Stress (σ _v)	8720	60.12		

Table 2

Table 2				
Ze	ro Displacement Pr	ressure Scenario		
Capillary Pressure @ OWC (psi)	PSI	MPa		
	0	0		
			<u></u>	
Depth @ FWL (psi)	feet	meters		
	11850	3612		
Note: Pressure @ OWC = Pressure			<u></u>	
at FWL				T
			PSI	MPa
	Oil		7986	55.06
Pressures @ top of the J3 Sand	Water		7851	54.13
	Capillary (u _{cow})		134	0.92

CAPILLARY SEALING:

TASK:

The mercury-air capillary behavior of the caprock is shown in Figure 3. u_{de} is the extrapolated displacement pressure and this is interpreted to be the migration pressure (u_{cmig}) (See Chapter 2, text).

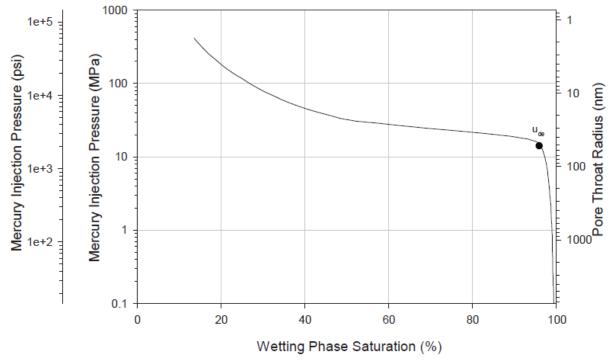


Figure 3: See (Flemings, 2021) Figure 9.4.

To convert mercury-air injection pressure to oil water, use Eq. 2.22.

$$u_{cow} = u_{cHg-air} \left(\frac{\gamma_{ow} \cos \theta_{ow}}{\gamma_{Hg-air} \cos \theta_{Hg-air}} \right)$$
. Eq. 2.22

Parameters for Eq. 2.22 are shown in Table 3:

Table 3 (see Table 2.4 in text).

i adie 5 (see Tadie 2.4 in text).				
System	Contact Angle (θ)	Interfacial Tension $(\gamma)(\frac{dyn}{cm})$		
Laboratory				
Air-water	0	72		
Oil-water	30	48		
Air-Mercury	140	480		
Air-oil	0	24		
Reservoir				
Water-oil	30	30		
Water-gas	0	50*		
Oil-gas	0	24		
*pressure/temp dep.				

The height above the free water level is:

$$h_{FWL} = \frac{u_{cmig}}{\Delta \rho g}.$$
 Eq. 9.1

Assume that water gradient is 0.46 psi/ft (1.06 g/cc) and that the oil gradient is 0.29 psi/ft (0.67 g/cc). Use contact angle (θ) = 0° for oil/water reservoir conditions.

Calculate the maximum column of oil that can be trapped (Eq. 9.1).

MECHANICAL SEAL: HYDRAULIC FRACTURE CONTROL:

Leak off measurements at Bullwinkle constrain the value of the least principal stress in the seal (σ_3^{seal}) to be 8546 PSI.

$$u_{crit}^{res} = \sigma_3^{seal}$$
, Eq. 9.3

$$h_{FWL} = \frac{u_{crit}^{res} - u_w^{res}}{\Delta \rho q}.$$
 Eq. 9.4

Assume that the caprock pore pressure is equal to the water phase pressure at the top of the sand. What is the height of the trapped column (eq. 9.3)?

MECHANICAL SEAL: SHEAR FAILURE CONTROL

Calculate the hydrocarbon column height if there is leakage along critically stressed faults (Eq. 9.5).

Calculate u_{crit}^{res} :

$$u_{crit}^{res} = \frac{\sigma_h^{seal} - \left(\frac{1 - \sin\phi'}{1 + \sin\phi'}\right)\sigma_v}{\left[1 - \left(\frac{1 - \sin\phi'}{1 + \sin\phi'}\right)\right]}.$$
 Eq. 9.5

Assume the friction angle (ϕ') is equal to 30 degrees and that the caprock pore pressure is equal to the water phase pressure at the top of the sand. What is the height of the trapped column (Eqs. 9.3 & 9.5)?

Flemings, P., 2021, A Concise Guide to Geopressure: Origin, Prediction, and Applications, Cambridge Press.