HW-3b: Stress State, Mohr Diagrams, and Coulomb Failure

PT	σ_1 (MPa)	σ_3 (MPa)	$\frac{\sigma_1 + \sigma_3}{2}$	$\frac{\sigma_1 - \sigma_3}{2}$
А	13	7		
	15	7		
	17	7		
	19	7		
В	21	7		

Consider the following compression experiment. The maximum principal stress (σ_1) is increased while the least principal stress (σ_3) is held constant.

Figure 1: Sketch of experiment. The maximum principal stress is increased while the least principal stress is held constant.

- 1) Plot this evolving stress state on a Mohr Diagram (Figure 2 top). Label the maximum shear stress. What is the angle of the plane to the maximum principal stress that carries the maximum shear stress?
- 2) Plot this evolving stress state on an average stress (s) vs. maximum shear stress plot (t) (Figure 2 bottom).
- 3) The rock fails when σ_1 reaches 21 MPa.
 - a. Plot the Coulomb failure surface on Figure 2, top. Calculate the friction angle (ϕ) . Calculate the angle of this failure surface relative to the orientation of σ_1 .
 - b. On Figure 2, bottom. Draw a line from the origin to Pt. B. Calculate the slope of this line and determine the friction angle.

$$\frac{t}{s} = sin\phi$$

Figure 2: Mohr Diagram.