UT Geofluids & Hydrates Style Guide

Rev C, Jan 2016, MAN

- 1) We call our specimens 'mudrocks'
- 2) Observe the following naming conventions for mudrocks. Color codes apply to all plots / graphics that have more than one mudrock on them, and to any other plots / graphics where it is reasonable to adopt such a color scheme

Full name	Abbreviation	Fill Color (RGB)
Resedimented Boston Blue Clay	RBBC	Royal Blue (0, 21, 255)
Resedimented Gulf of Mexico -	RGoM-EI	Red (255, 0, 0)
Eugene Island Block		
Resedimented San Francisco Bay	RSFBM	Green (0, 255, 0)
Mud		
Resedimented Gulf of Mexico -	RGoM-Ursa	Purple (125, 0, 255)
Ursa		
Resedimented Presumpscot Clay	RPC	Dark Yellow (255, 200, 0)
Resedimented Nankai	RNC	Orange (255, 120, 0)
Resedimented Ugnu Clay	RUC	Grey (204, 204, 204)
Resedimented Cornwall Kaolin	RK-Cornwall	White / Open (255, 255, 255)
Resedimented Edgar Plastic	RK-EPK	Cyan (0, 255, 255)
Kaolin		
Resedimented Villanova Tulo	RK-VWK	Pink (255, 115, 212)
White Kaolin		
Skibbereen Silt	SS	Maroon (171, 0, 56)
Illite	Illite	Teal (171, 0, 56)
Resedimented London Clay	RLC	Brown (190, 92, 28)
Resedimented Florida Bay Mud	RFB	Dark Red (for now)
Modified Clay fraction of any of	<% clay> + parent abbreviation	Shades of parent color relative
the above	(e.g. 39% clay RBBC)	to % clay fraction (i.e. less clay =
		lighter, more clay = darker)

- 3) Where there are multiple depth intervals of the same mudrock, add the depth interval following the name / acronym in parentheses, e.g. RGoM-URSA (309)
- 4) Keep BLACK color as a floater color for comparing properties between the SAME material (i.e. comparing permeability and resistivity of RBBC)

Rules for Plots:

General Notes:

Permeability in m²

Stress in Mpa

Label axis with title, symbol, and units e.g. "Void ratio, e", or "Permeability, k (m²)" Often, plot porosity in reverse order (high to low) to simute increasing stress to the right (comparable with a stress scale)

Permeability Plots

y axis: Permeability in m², log scale x axis: Porosity or Stress in Mpa

Compression plots:

y axis: void ratio or porosity, depending on soil and message

x axis: Stress in Mpa, log scale

Resistivity plots:

y axis: resistivity in Ωm OR formation factor, in log scale

x axis: porosity or stress in Mpa

Anisotropy plots:

y axis: anisotropy

x axis: porosity or stress in Mpa

Velocity plots:

y axis: velocity in m/s

x axis: porosity or density or stress in Mpa

Orientation Plots

y axis: Particle orientaion in degrees x axis: porosity or stress in Mpa

Other plots:

Salinity is on a log scale, in g/L

List of Symbols - Geofluids:

Symbol	Typical Units	Units	Dimensions
а	-	Archie's Law fitting parameter (tortuosity parameter)	-
Α	-	Alternate permeability anisotropy definition suggested by Meegoda et al (1989)	-
А, а	m²	Area for falling head test (big and small, respectively)	
ан	-	Archie's Law fitting parameter (tortuosity parameter) in the horizontal direction	-
a_σ	-	Archie's Law fitting parameter (tortuosity parameter) for the conductivity anisotropy	-
a _V	-	Archie's Law fitting parameter (tortuosity parameter) in the vertical direction	-
С	nF, mF, F	Capacitance	
Cc	-	Slope of virgin compression line e vs. log stress space (space assumed)	-
C _C	-	Slope of swelling line e vs. log stress space (space assumed)	-
C _{C-e}	-	Slope of virgin compression line e vs. log stress space (space defined)	-
C _{c-e}	-	Slope of swelling line e vs. log stress space (space defined)	-
C _{c-n}	-	Slope of virgin compression line n vs. log stress space (space defined)	-
C _{c-n}	-	Slope of swelling line n vs. log stress space (space defined)	-
CEC	equivalents / kg	Cation Exchange Capacity	
C _k	-	Slope of permeability curve in log permeability vs. n space	-
Co	unit/m³	Initial Concentration. Unit may be charge, volume or mass.	unit/Volume
C _v	cm²/s	Coefficient of consolidation	
C_{α}	-	Log time rate of secondary compression	
dr _k /dn	-	Slope of permeability anisotropy curve in permeability anisotropy vs. porosity space	-
е	-	Void ratio. Equal V _v /V _s	[]
e _o	-	Initial void ratio OR void ratio intercept fixed at $e = 1.0$; corresponds to n_0	-
F	-	Formation factor (general) or intrinsic formation factor	-
Fa	-	Apparent Formation Factor	-
g	9.807 cm/s ²	Gravitational Constant	L/T ²

Gs	-	Specific gravity	[]
h	m	Hydraulic head	
Н	cm, m	Height of sample	
H _o	cm, m	Initial height of sample	
i	-	Gradient	[]
k	m², millidarcy	Permeability. Property of the medium. Also known as intrinsic permeability.	[L2]
K	cm/s, m/s	Hydraulic conductivity. Property of the medium and the fluid. Often mis-referred to as permeability by engineers.	[L/T]
k _H	m ² , millidarcy	Horizontal or radial permeability	[L2]
K _H	cm/s, m/s	Horizontal or radial hydraulic conductivity.	[L/T]
Ko	-	Coefficient of Lateral Earth Pressure at rest	[]
k _V	m², millidarcy	Vertical permeability	[L2]
K _V	cm/s, m/s	Vertical hydraulic conductivity.	[L/T]
L	cm, m	Length	[L]
Lo	cm, m	Direct path length	L
log K _o	cm/s, m/s	intercept of permeability model (at either n = 0 c/o Julia or n = 0.5 c/o Amy & Brendan)	
М		Mass	
m	-	Aspect Ratio	-
m	-	Archie's Law cementation exponent	-
m _H	-	Archie's Law cementation exponent in the horizontal direction	-
Ms		Mass of solids	
m_{σ}	-	Archie's Law cementation exponent for the conductivity anisotropy	-
Mt		Total mass	
m _V	-	Archie's Law cementation exponent in the vertical direction	-
m _v	1/Mpa	Coefficient of volume compressibility	
n	-	Porosity. Equal to $V_v/V_{t.}$	[]

n	-	Measurement number in measurement sequence bias correction	
n _o	-	Initial porosity OR porosity intercept fixed at n = 0.5; corresponds to e _o	-
OCR	-	Over consolidation ratio	-
Р	MPa, kPa	Pressure	
p'	MPa, kPa	$p' = (\sigma'_1 + \sigma'_3)/2$	M/LT ²
PI	%	Plasticity Index	[%}
θ	degrees	Particle orientation relative to the horizontal	degrees
Q	cm³/s, m³/s	Volumetric flow Rate	
q	cm/s, m/s	Linear flow rate (geotechnical applications)	L/T
q	cm ³ /(cm ² s), m ³ /(m ² s)	Volumetric flux	L ³ /L ² T
q	MPa, KPa	Deviatoric shear stress	M/LT ²
$\theta_{\rm o}$	degrees	Initial particle orientation	degrees
$ heta_{ extsf{ev}}$	degrees	Particle orientation relative to the horizontal at a fixed volumetric strain εv	degrees
R	Ω	Resistance	R
r _k	-	Permeability anisotropy	[]
r _{ko}	-	Permeability anisotropy intercept at porosity 0.5	-
$r_{ ho}$	-	Resistivity anisotropy	[]
r_{σ}	-	Conductivity anisotropy	[]
r _v	-	Velocity anisotropy	[]
Ss	m²/g, m2/kg	Mass based specific surface area. Equal to the surface area per unit mass.	[L ² /M]
S		Saturation	
Sa	1/m	Volumetric specific surface area. Equal to the surface area per unit volume.	[L ² /L ³]
Т	Degrees Celsius, Degrees Kelvin	Temperature	Degrees
t	S	Time	
t _D	nm	Debye Length	L
u	MPa, kPa	Pore pressure	M/LT ²

Ub	MPa, kPa	Back pressure (pore pressure in a laboratory experiment)	M/LT ²
V		Volume	
V	V, mV	Voltage	
Vs	cm³, m³	Volume of the solid grains	[L ³]
V _t	cm³, m³	Total volume	[L ³]
V _v	cm³, m³	Volume of the voids	[L ³]
V_P	m/s	Compressional Velocity	[L/T]
Vs	m/s	Shear Velocity	[L/T]
V _{SHH}	m/s	Shear Velocity in the horizontal direction polarized horizontally	[L/T]
V_{SHV}	m/s	Shear Velocity in the horizontal direction polarized vertically	[L/T]
V_{SV}	m/s	Shear Velocity in the vertical direction	
Wı	%	Liquid limit	[%]
Wp	%	Plastic limit	[%]
X		Successive measurement sequence bias correction factor	
x'		Non-successive measurement sequence bias correction factor	
βs		Surface mobility	
γр	kN/m³	Unit weight of permeant. Equal to γ_w if the permeant is water.	$[ML/L^3T^2] = \\ [M/L^2T^2]$
γw	kN/m³	Unit weight of water	$[ML/L^3T^2] = [M/L^2T^2]$
Δ	-	Change (in a parameter that follows)	-
ε	-	Strain; strain rate with dot on top	
٤٧	-	Volumetric strain	-
λ	cm²/ eq Ω	Equivalent Ionic conductance	L2/ eq R
μ_{p}	Pa·s	Dynamic viscosity of the permeant.	[M/LT]
ν	m²/s	Kinematic viscosity, equal to μ/ρ	MT ² /L ²
ρ	g/cm³, kg/m³	Total mass density	[M/L ³]

ρ	Ωm	Electrical resistivity	[RL]
$ ho_w$	Ωm	Pore fluid resistivity	[RL]
σ	S/m	Electrical conductivity	[G/L]
σ'_{m}	MPa, kPa	Mean effective stress (first invariant of the effective stress tensor)	M/LT ²
σ_{m}	MPa, kPa	Mean total stress (first invariant of the total stress tensor)	M/LT ²
σ' _p	MPa, kPa	Maximum past pressure	M/LT ²
τ	-	Tortuosity, equal to L/Lo	-
τ_{H}	-	Horizontal Tortuosity	-
τν	-	Vertical Tortuosity	-
ф	-	Friction angle	-
Ψ	-	Dialation angle	-

List of Symbols - Hydrates:

Symbol	Typical Units	Units	Dimensions
Subscript			
g	-	Gas phase	-
h	-	Hydrate phase	-
i	-	Ice phase	-
l	-	Liquid phase	-
R	-	Solid phase	-
β	-	Phase index	-
D	-	Dimensionless parameters	-
Superscript	Superscript		

e	-	Energy component	-
m	-	Methane component	-
S	-	Salt component	-
w	-	Water component	-
K	-	Component index	-
а	-	Archie's Law fitting parameter (tortuosity parameter)	-
A	m²	Area of interface	L ²
cl	wt. %	Salinity	-
$cl_{\scriptscriptstyle ini}$	wt. %	Initial salinity	-
$cl_{\scriptscriptstyle equi}$	wt. %	Salinity at three-phase equilibrium	-
C_R	J kg ⁻¹ °C ⁻¹	Heat capacity of solid grain	L ² T ⁻² K ⁻¹
D_l^{κ}	m² s ⁻¹	Molecular diffusion coefficient of component κ in liquid phase in sediment	L ² T ⁻¹
D_{l0}^{κ}	$m^2 s^{-1}$	Molecular diffusion coefficient of component κ in free water	L ² T ⁻¹
F_{eta}	kg m ⁻² s ⁻¹	Mass flux of phase eta	M L ⁻² T ⁻¹
F^{e}	W m ⁻²	Energy flux	M T ⁻¹
F^{κ}	kg m ⁻² s ⁻¹	Mass flux of component κ	M L ⁻² T ⁻¹
$F_{eta}^{\ \kappa}$	kg m ⁻² s ⁻¹	Mass flux of component κ in phase eta	M L ⁻² T ⁻¹
g	m s ⁻²	Acceleration due to gravity	L T ⁻²
h_{eta}	J kg ⁻¹	Specific enthalpy of phase eta	L ² T ⁻²
J_{eta}^{κ}	kg m ⁻² s ⁻¹	Diffusive flux of component κ in phase eta	M L ⁻² T ⁻¹
k	m²	Sediment intrinsic permeability	L ²
k_0	m²	Sediment intrinsic permeability in absence of hydrate	L ²
$k_{r\beta}$	-	Relative permeability of phase eta	-
	•		·

L_h	J kg ⁻¹	Latent heat for hydrate formation and dissociation	L ² T ⁻²
L_i	J kg ⁻¹	Latent heat for ice formation and melting	L ² T ⁻²
М	kg mol ⁻¹	Molecular weight	M (MOL) ⁻¹
M^{e}	J m ⁻³	Energy accumulation	M L ⁻¹ T ⁻²
M_{β}^{κ}	kg m ⁻³	Mass accumulation of component κ in phase eta	M L ⁻³
l	-	Iteration index	-
V	-	Hydration number	-
O cgw	Pa	Gas-water capillary pressure	M L ⁻¹ T ⁻²
chw	Pa	Hydrate-water capillary pressure	M L ⁻¹ T ⁻²
o	Pa	Capillary pressure in ice and hydrate free sediments	M L ⁻¹ T ⁻²
O d	Pa	Capillary entry pressure	M L ⁻¹ T ⁻²
β	Pa	Pressure of phase eta	M L ⁻¹ T ⁻²
! ^e	J m ⁻³ s ⁻¹	Energy generation rate	M L ⁻¹ T ⁻³
K	kg m ⁻³ s ⁻¹	Source or sink of component κ	M L ⁻³ T ⁻¹
β	m s ⁻¹	Volumetric flux or Darcy's velocity of phase eta	L T ⁻¹
R_{eta}^{κ}	kg m ⁻³	Mass residual of component κ in phase eta	M L ⁻³
rg	-	Residual gas phase saturation	-
rl	-	Residual liquid phase saturation	-
β	-	Saturation of phase eta	-
,* β	-	Effective saturation of phase eta	-
	s	Time	Т
7	°C	Temperature	К
l_{β}	J kg ⁻¹	Specific internal energy of phase eta	L ² T ⁻²
β	m s ⁻¹	Pore flow velocity of phase eta	L T ⁻¹

V_{eta}	m³	Volume of phase eta	L ³
x_{l+g}^m	-	Liquid gas equilibrium methane solubility	-
x_{l+h}^m	-	Liquid hydrate equilibrium methane solubility	-
x_{β}^{κ}	-	Mass fraction of component κ in phase eta	-
Greek let	ter		
ϕ	-	Porosity	-
ϕ_0	-	Porosity in absence of hydrate	-
$ ho_{\scriptscriptstyle b}$	kg m ⁻³	Bulk density	M L ⁻³
$ ho_{eta}$	kg m ⁻³	Density of phase $oldsymbol{eta}$	M L ⁻³
$ ho_{\scriptscriptstyle R}$	kg m ⁻³	Density of solid grain	M L ⁻³
μ_{eta}	kg m ⁻¹ s ⁻¹	Dynamic viscosity of phase eta	M L ⁻¹ T ⁻¹
λ	W m ⁻¹ °C ⁻¹	Bulk thermal conductivity of the porous media	M T ⁻³ K ⁻¹
λ_{eta}	W m ⁻¹ °C ⁻¹	Thermal conductivity of phase eta	M T ⁻³ K ⁻¹
τ	-	tortuosity	-
θ	rad	Slope angle	rad
$\sigma_{\scriptscriptstyle gw}$	J m ⁻¹	Interfacial tension between gas and water	M L T ⁻²

List of Abbreviations - Hydrates:

BSR	Bottom simulating reflector
BHSZ	Base of hydrate stability zone
G	Gas
Н	Hydrate
HSZ	Hydrate stability zone
L	Liquid
mbsf	Meter below sea floor
mbsl	Meter below sea level
1	Ice
RHSZ	Regional hydrate stability zone

List of Abbreviations:

A/D	Analogue-to-Digital Converter
AC	Alternating Current
BASIC	Beginner's All Purpose Symbolic Instruction Code
CF	Clay Fraction
СН	High Plasticity Clay
CL	Low Plasticity Clay
CRS	Constant Rate of Strain
D/A	Digital-to-Analogue Converter
DC	Direct Current
LIR	Load Increment Ratio
LVDT	Linear Variable Differential Transformer
MIT	Massachusetts Institute of Technology
NC	Normally Consolidated
ОС	Over Consolidate
OCR	Over Consolidation Ratio
PC	Personal Computer
PID	Proportional-Integral-Derivative
PVA	Pressure Volume Actuator
PVC	Pressure Volume Controller
RMS	Root Mean Squared
UT	University of Texas