Geoscience Workforce & the Future of Undergraduate Geoscience Education

What does it mean to be a geoscientist? Is there a core curriculum?

Earth Educators' Rendezvous

Boulder, CO

July 14, 2015

Results from project sponsored by

Future of Undergraduate Geoscience Education

2014 Summit:

- ~200 educators representing broad spectrum of undergraduate geoscience education community
 - R1 research universities with undergraduate programs, 4-year and 2-year colleges
 - Faculty, heads & chairs, education researchers
 - Industry, government & professional society representatives (~20)
- 1st step in development a high-level community vision for the geosciences
 - Surprising collective agreement

Ongoing Community Survey

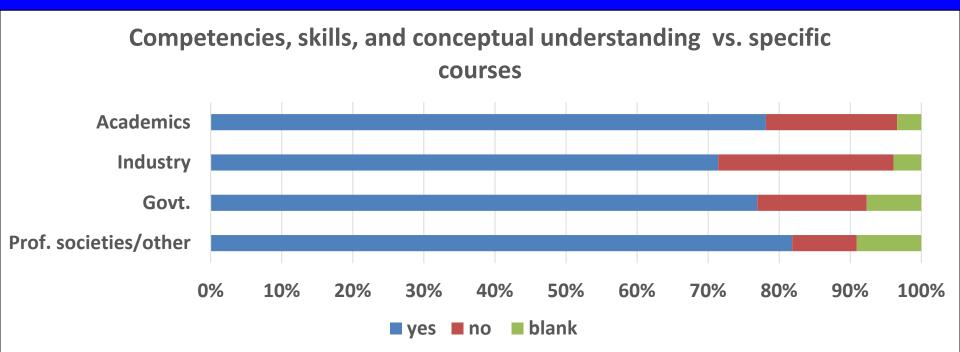
455 respondents

- 354 academics (78%), 76 industry (17%), 13 government (3%), 7 other (1%), 5 professional societies (1%)
- 85% not Summit participants

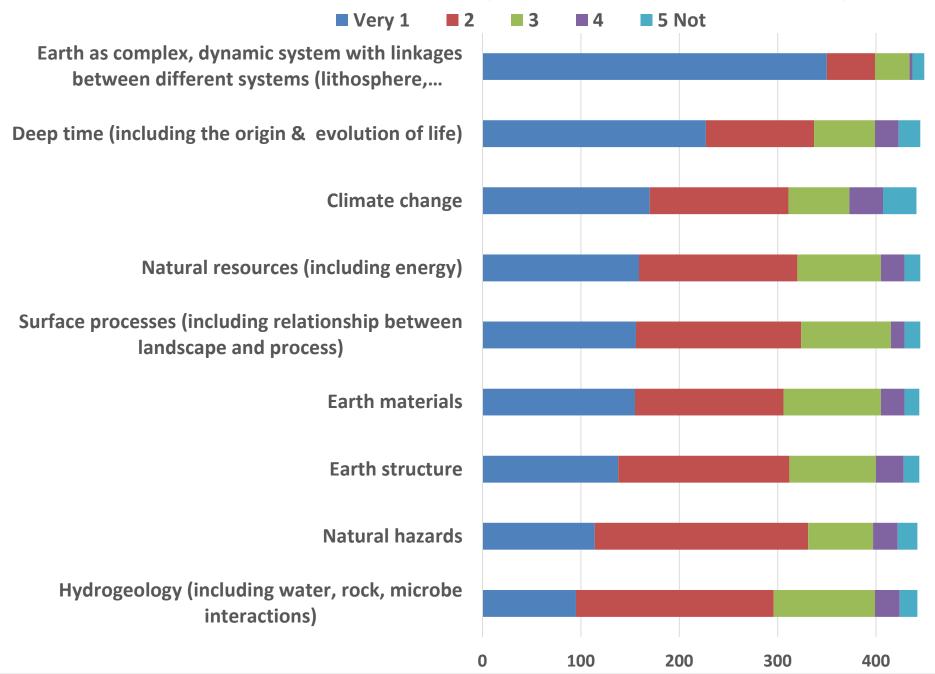
Geoscience Employers Workshop (May, 2015)

- 46 participants: 6-7 each from energy, hydro/engineering/environmental, govt. agency, prof. societies, academics; 1 mining
- Plus ~13 NSF program directors

Summit for Heads & Chairs – Jan. 2016


Geoscience Workforce today & in the future...

- Need for multi-disciplinary approaches to problems
 - More integration of different types of datasets
 - Cross disciplinarily teamwork
- Different paradigms thinking about rocks in fundamentally different ways
- Different types of jobs for geoscientists
- Technological advances changing skill sets
 - More digital & modeling skills
 - Black box mentality without understanding how works
- BIG DATA manage, use, model; statistical analysis
- More interaction between business & society
 - Economics/law/business practices/ethics/risk/environment
- Cultural diversity


As the workforce changes – student learning must change

Concepts, Skills, Competencies

- Major conclusion of Summit
 - Developing competencies, skills, and conceptual understanding
 - More important than taking specific courses
 Survey Results:

Summit Outcomes/Survey Results: Important Concepts

Employer Workshop: Systems Thinking

How systems work and interact

- Atmosphere Climate, Weather, Ocean-atmospheric circulation
- Hydrosphere Ocean, Ice, Surface water, Groundwater
- Lithosphere rock cycle, deformation, structure, tectonics
- Pedosphere/surface Geomorphic, Erosion, and Surface Processes, Landscape evolution
- Biosphere Paleontology, Ecosystems
- Solar/Earth Interactions Tidal, Climate; planetary geology
- Human/Societal Coupled to Earth Natural Resources, Energy, Anthropomorphic Climate Change, Natural Hazards
 - Influence of geology on society
 - Influences of society on earth processes

Processes

- Geochemical Cycles C, H₂O, N, P
- Thermodynamics energy, kinetics, diffusion, heat, mass transfer, fluid flow
- Geomechanics/Stress State/Rheology
- Geological Time/Earth Evolution
- Plate Tectonics/Geodynamics
- Tectonic Processes
- Depositional Processes
- Crystallization Processes

Tools

- Statistics/Uncertainty/Probability
- Mathematics (differential equations, linear algebra)
- Field Methods
- Cartography
- Geography and spatial thinking
- Potential Fields
- Remote Sensing
- Age Dating
- Instrumentation
- Analytical/Numerical Modeling
- Seismology/Geophysical sensing

Earth as a Complex System

- Non linear complex systems
 - Size of systems complexity of scale and interactions
 - Feedback loops, interactions, forcings
 - Implications and predictions
- Energy, mass, fluid transport (movement and flow), residency, and cycles
- Work/changes that affect the Earth's systems
 - Human drivers and impacts of change, Anthropocene
 - Environmental transitions
 - Scales of change
 - Using the present processes to infer past processes:
 Advantages/risks
- Solar system interaction

Deep Time

- Conventional concepts of geologic time
 - Paleontology, superposition
 - Relative vs absolute age
 - Tools to determine absolute age (radioisotopes, stable isotopes, etc.), precision of data, limitations
 - Extrapolate from lab to field
- Impact on processes
 - Time scales over which processes are relevant
 - Specific periods in geologic time that are critical for different processes
 - Impact of time on "Earth" events (i.e. weathering, geodynamics, resources, etc.)
- Events and rates
 - Duration, frequency, magnitude and residence time
 - Timing, scale, sequencing and rates of change
- Temporal reasoning

Climate Change

- What is climate change? Geologic scale vs. present change
 - Significant climate change in geologic past
 - Relevant space and time scales
 - Continental vs local scale change
 - Proxy records
 - Rate of climate change; rapid change
- Driving forces and causal mechanisms
 - External forcing vs. internal forcing
 - Dependence upon spatial and temporal scale and feedbacks
 - Impact of plate tectonics, atmosphere-earth interactions, etc.
 - Human-induced climate change
- Carbon cycle
- Difference between weather and climate
- Impacts of climate change
 - Water resources, hydrologic cycle, other climate change effects
 - Biosphere implications, ocean acidification, sea level rise
 - Implications on soil, agriculture
 - Economics and social aspects of climate change
 - Climate element to environmental consulting and hydrogeology as well as petroleum exploration

Natural Resources

- Understanding of what is included in "natural resources"
 - Economic geology (commodities and finite resources)
 - Energy, water, minerals, geologic materials
- Solid vs. liquid resources, geographic distribution, uses
- Ecosystem services, analysis of renewable and nonrenewable (finite) resources
- Resource dependency and limits
 - Finite resource or commodity
 - Understanding your environment (where do our materials, energy, and medicines come from)
 - Ore and fossil fuel supply and demand and getting it to market
 - Time and space scale of formation and depletion, sustainability
 - Economics and viability of resources
 - How things are made
 - Process from ore to refined product
 - Process from fossil fuel to energy or material objects

Surface Processes

- Sediment deposition & erosion
 - Stream/River flow, morphology, deposition, erosion, effect of floods
 - Transport relationships (all surface processes)
 - Magnitude and frequency relationships of surficial deposits
 - Subsurface analogs
- Terrestrial and marine surface interactions
 - Biological, chemical, and physical interactions
 - Rates of chemical and physical changes
- Landscape alteration (geomorphology)
 - Surface mechanical processes
 - Karst formation
 - Glacial till and overburden thickness
- Habitability, sustaining life
 - Ties to natural hazards

Earth Materials

- What is a rock, mineral? Rock cycle
- Rocks: physical and chemical properties
 - How measure, scale of measurement
 - Mechanical characteristics
 - Scales of heterogeneity
 - How change over time
- Processes that form rocks and minerals
 - Processes and conditions of formation
 - Localizing mechanisms for deposits
 - Fluid dynamics, flow and fluid chemistry
 - Role of microbiology and organisms
- Resource applications, organic-inorganic materials

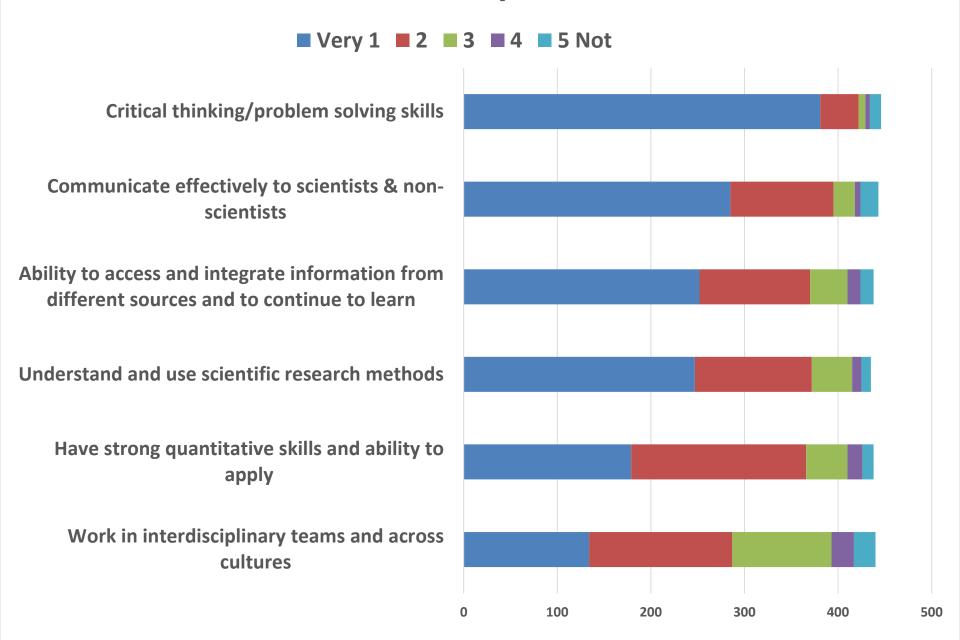
Earth Structure

Structure of Earth

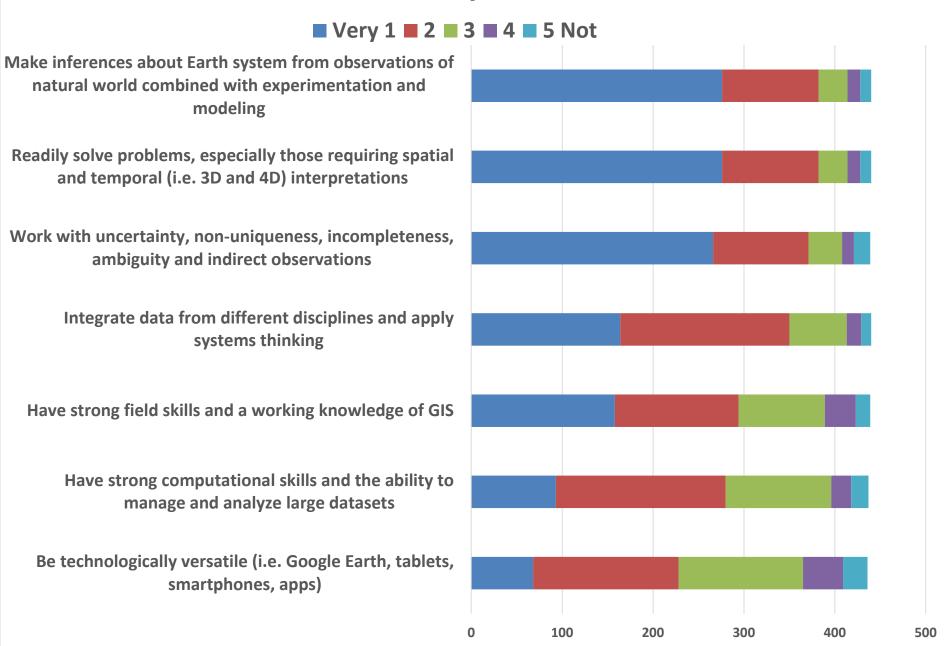
- Mechanical and compositional layers
- Tools for defining earth structure (seismic waves, analysis of earthquakes, etc.)

Deformation

- Stress and strain
- Rock mechanics & deformation processes
- Fractures, faults, folds, other structural features, etc.


Plate Tectonics, including

- Basin formation
- Episodic nature, planning perspectives, uncertainty
- Structural controls on resource accumulations


Hydrogeology

- Water cycle
- Groundwater/aquifers, confined vs unconfined aquifers
 - Phase behaviors
 - Saturated vs unsaturated conditions
 - Scales of heterogeneity in space and time
 - Contaminant transfer
- Biogeochemistry and aqueous geochemistry
 - Microbe interactions
 - Nutrient cycling
- Subsurface-surface water interactions
- Economics and public policy
 - Groundwater quality
 - Regulatory standards

Summit Outcomes/Survey Results: Science Skills

Summit Outcomes/Survey Results: Geoscience Skills

Employer Workshop: Geoscience Thinking

- Earth Science habits of mind/geoscientific thinking
 - Temporal and spatial thinking
 - Systems thinking
 - Geologic reasoning and synthesis
- Problem solving in the context of an open and dynamic system
 - Asking appropriate questions
 - Understand context of problem
 - Problem solving in 3- and 4-D
 - Ability to work on problems with no clear answers
 - Managing uncertainty in problem solving
 - Have a passion for solving problems
- Working by analogy, inference and the limits of certainty
- Intellectually flexible applying skills in new scenarios

Skill List (A-awareness (had in class); P-proficiency (had to use/apply); M-mastery (project, etc. requiring demonstration of ability); E-expert (MS or PHD)	Level of Mastery
Critical thinking/problem solving skills	Р
Communicate effectively to scientists & non-scientists	Р
Readily solve problems, especially those requiring spatial and temporal (i.e. 3D and 4D) interpretations	M
Make inferences about Earth system from observations of natural world combined with experimentation and modeling	M
Work with uncertainty, non-uniqueness, incompleteness, ambiguity and indirect observations	M
Ability to access and integrate information from different sources and to continue to learn	M
Understand and use scientific research methods	P
Have strong quantitative skills and ability to apply	Р
Integrate data from different disciplines and apply systems thinking	P
Have strong field skills and a working knowledge of GIS	M, P
Work in interdisciplinary teams and across cultures	Р
Have strong computational skills and the ability to manage and analyze large datasets	Р
Be technologically versatile (i.e. Google Earth, tablets, smartphones, apps)	M

Technical Skills

- Problem Solving with data
 - Data collection and interpretation, use of data and application
 - Evaluation of data, data quality, purpose of collecting data, begin with understanding of how data will answer question
 - Understanding data and uncertainties
 - Make predictions with limited data
 - Use of appropriate methods, reading and interpreting graphs
- Quantitative/Math skills integrate into geo courses throughout
 - Differential equations/linear algebra
 - Probability and statistics (so understand risk)
 - Understanding of scale
 - Computer programming skills (think about how to solve a problem computationally)
- Experience with authentic research, collection of new information
- Critically evaluate literature, encourage critical thinking

Field and Technology Skills

Field Camp and Field Experiences

- Improves spatial cognition, creative problem solving, teamwork, geoscience synthesis
- Data supports field skills are unique and essential, difficult to replicate or substitute
- GIS Most essential for building large data sets
- Ability to handle and analyze Big Data
- Use of visual models, modeling tools (Stella, Modflow, Matlab, etc.)
- Integration of technical and quantitative skills, programming, application development
- Technological diversity (need skills and training beyond point, click, and type) – i.e. not just black box
- Preparation for life-long learning
 - How to learn and use new technology and software

Non-technical Skills

Oral and written communication competency

- Science writing and verbal communication; knowing your audience
- Public speaking
- Listening skills

Project management

- Ability to work in teams
 - Be a leader and follower
 - Don't divide work; iterative process between students with different backgrounds/disciplines
- Goal setting
- Conflict resolution (open minded answer may lie in the conflict space)
- Managing problems on the front end
- Solution-oriented approaches
- Time management

Professionalism, interpersonal skills

- Ethics, ethical awareness and codes of conduct
- Business acumen and risk management
- Cultural interactions, cultural literacy, emotional literacy, learning styles, awareness of implicit biases
- Leadership
- Career awareness/resume/interview preparation
- Global perspective
- Understand societal relevance

Effective Ways of Developing Skills/Competencies/Concepts

- Experiential learning incentivize faculty to increase use
 - Constant engagement in opportunities to practice skills and use concepts
 - Project based courses
 - Collaborative, integrative team projects
 - Interdisciplinary projects
 - Fieldwork and field experiences
 - Exercises using and analyzing real data
 - Internships or REUs

 the earlier and more often the better
 - Research experiences/projects
 - Senior Theses
 - ASBOG test as a source of problem-oriented activity for the classroom and as an incentive
 - Use games to teach & reward innovation and creativity
 - Integration and interactive use of technology
 - Visualization, simulation, modeling, use of real data
- More active collaboration between academia and the outside employers

Outcomes:

Links on http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduate-education/

- Summit Summary Report
- Survey ongoing
- Archived Summit webcasts
- AGI/AGU Heads/Chairs Webinar
- PPT slides

Contact smosher@jsg.utexas.edu

ORGANIZING COMMITTEE

Tim Bralower, Pennsylvania State University

Jacqueline Huntoon, Michigan Technological University

Peter Lea, Bowdoin College

David McConnell, North Carolina State University

Kate Miller, Texas A&M University

Sharon Mosher, University of Texas at Austin

Jeff Ryan, University of South Florida

Lori Summa, ExxonMobil Upstream Research

Joshua Villalobos, El Paso Community College

Lisa White, University of California – Berkeley

Sustained change in geoscience undergraduate education

- Combined, coordinated efforts of departments and programs
- Administrators, individual faculty innovators
- Geoscience professional societies & future workforce employers
- Affect culture change administration down to student level