Skills and concepts-driven revision of the Texas A&M B.S. Geology and B.S. Geophysics degrees

David Sparks, Julie Newman, TAMU Geology and Geophysics Curriculum Study Group

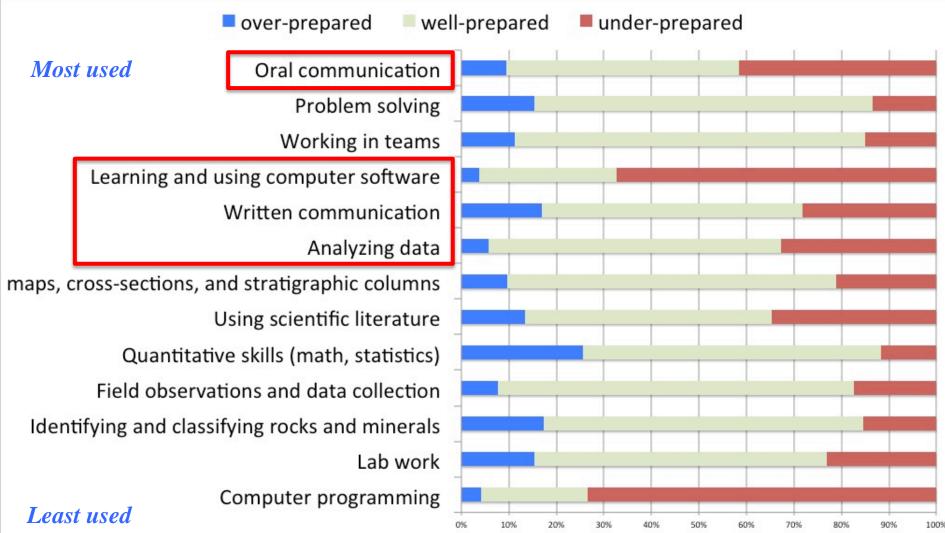
Debra Fowler, Carolyn Sandoval, TAMU Center for Teaching Excellence

## **Overview of TAMU Geology and Geophysics Dept.**

30 tenure/tenure-track faculty (8 newly added over last 3 years)

large recent increases in undergrad majors (currently ~550)

~100 graduate students Service teaching : 900-1200 students/sem.


Last revision of curriculum: 1998

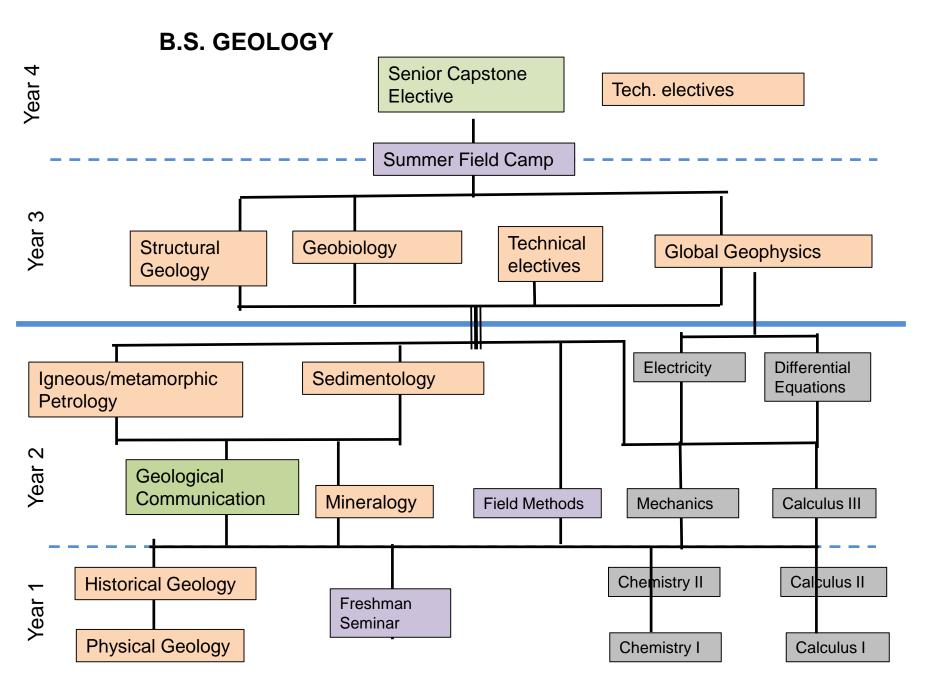
Formed the **Curriculum Study Group** (G&G faculty and CTE curriculum experts, students, academic advisor)

Gathered Data... Summer/Fall 2014 Identified Ideal Student, Program Learning outcomes *Spring* 2015 And wrote rubrics for outcomes Summer/Fall 2015 Discipline-specific working groups Designed plan for courses using the developed rubrics **Entire Faculty** Fall 2015 Settled on plan of courses In progress **Create Curriculum Map** *Spring* 2016 **Design/Redesign courses Develop assessment plan/instruments** 

## Former Student Survey

# How prepared do students feel?




### **Geoscience Learning Outcomes**

- 1. Earth Materials: Evaluate relationships between Earth materials and Earth system processes
- 2. Earth Dynamics: Infer the state and evolution of the global Earth system from fundamental physical/chemical/biological processes
- **3. Space & Time:** Recognize the variability and interdependence of Earth's systems through time and space, from the micro- to macro-scale
- 4. Modeling and Manipulating Data: Analyze data and develop models to understand geological systems
- 5. Earth System Processes: Interpret Earth's surface based on interaction between the atmosphere, biosphere, hydrosphere and geosphere.

#### Texas A&M Undergraduate Learning Outcomes (Professional Skills)

- 6. Demonstrate Critical Thinking
- 7. Effectively communicate
- 8. Practice Personal & Social Responsibility
- 9. Demonstrate social, cultural and global competence
- **10.** Prepare to engage in Lifelong Learning
- 11. Work collaboratively

| Indiastor               |                                                                                                                        |                                                                                                               |                                                                                                                 |                                                                                                                                                 |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicator               | Novice                                                                                                                 | Developing                                                                                                    | Proficient                                                                                                      | Exemplary                                                                                                                                       |
| Global Heat<br>Budget   | Define pressure,<br>temperature, and<br>describe their<br>variation within the<br>Earth                                | Describe how changes<br>in pressure and<br>temperature affect the<br>state and rheology of<br>Earth materials | Identify the sources of<br>heat in the deep Earth<br>and the mechanisms<br>of heat transfer                     | Quantify the balance<br>of heat sources and<br>transfer mechanisms<br>and relate to global<br>cooling rates and<br>region tectonic<br>processes |
|                         | Physical Geology                                                                                                       | Structural Geology                                                                                            | Global Geophysics                                                                                               | Global Geophysics                                                                                                                               |
| Visual<br>Communication | Define types of graphs<br>and variables; identify<br>structures and<br>processes displayed in<br>drawings of the Earth | Construct graphs to<br>display data, and<br>reproduce drawings<br>that display Earth<br>structure and dynamic | Infer relationships<br>from visualized data.<br>Connect graphical<br>relationships with<br>geological concepts. | Combine text,<br>visualizations and<br>quantitative<br>arguments to<br>communicate<br>interpretations of<br>geologic processes                  |
|                         | <b>Physical Geology</b><br>Geol. Communication                                                                         | Geol. Communication<br>Field Methods<br>Structural Geology                                                    | Global Geophysics<br>Structural Geology                                                                         | Global Geophysics<br>Senior Capstone<br>Elective                                                                                                |



## Lessons Learned (so far)

Get the right mix of people involved from the start

Keep touching base with reality/constraints

Bring (almost) everyone along