Overview of Geoscience Employers Workshop Outcomes

General thoughts on concepts: From Geoscience Employers Workshop

Systems Thinking

How systems work and interact

- Atmosphere: Climate, Weather, Ocean-atmospheric circulation
- Hydrosphere: Ocean, Ice, Surface water, Groundwater
- Lithosphere: rock cycle, deformation, structure, tectonics
- Pedosphere/surface: Geomorphic, Erosion, and Surface Processes, Landscape evolution
- Biosphere: Paleontology, Ecosystems
- Solar/Earth Interactions: Tidal, Climate; planetary geology
- Human/Societal Coupled to Earth: Natural Resources, Energy, Anthropomorphic Climate Change, Natural Hazards
 - o Influence of geology on society
 - o Influences of society on earth processes

Processes

- Geochemical Cycles: C, H2O, N, P
- Thermodynamics: energy, kinetics, diffusion, heat, mass transfer, fluid flow
- Geomechanics/Stress State/Rheology
- Geological Time/Earth Evolution
- Plate Tectonics/Geodynamics
- Tectonic Processes
- Depositional Processes
- Crystallization Processes

<u>Tools</u>

- Statistics/Uncertainty/Probability
- Mathematics (differential equations, linear algebra)
- Field Methods
- Geography and spatial thinking
- Seismology/Geophysical sensing
- Potential Fields
- Remote Sensing
- Analytical/Numerical Modeling
- Age Dating
- Instrumentation
- Cartography

<u>Geoscience concepts</u>: Identified by 1st Summit, validated by survey; granularity added at Geoscience Employers Workshop

Earth as a Complex System

• Nonlinear complex systems

- Size of systems complexity of scale and interactions
- Feedback loops, interactions, forcings
- \circ Implications and predictions
- Energy, mass, fluid transport (movement and flow), residency, and cycles
- Work/changes that affect the Earth's systems
 - Human drivers and impacts of change, Anthropocene
 - Environmental transitions
 - Scales of change
 - o Using the present processes to infer past processes: Advantages/risks
- Solar system interaction

Deep Time

- Conventional concepts of geologic time
 - Paleontology, superposition
 - Relative vs absolute age
 - Tools to determine absolute age (radioisotopes, stable isotopes, etc.), precision of data, limitations
 - Extrapolate from lab to field
- Impact on processes
 - Time scales over which processes are relevant
 - Specific periods in geologic time that are critical for different processes
 - Impact of time on "Earth" events (i.e. weathering, geodynamics, resources, etc.)
- Events and rates
 - o Duration, frequency, magnitude and residence time
 - Timing, scale, sequencing and rates of change
- Temporal reasoning

Climate Change

- What is climate change? Geologic scale vs. present change
 - Significant climate change in geologic past
 - Relevant space and time scales
 - Continental vs local scale change
 - Proxy records
 - Rate of climate change; rapid change
- Driving forces and causal mechanisms
 - External forcing vs. internal forcing
 - o Dependence upon spatial and temporal scale and feedbacks
 - o Impact of plate tectonics, atmosphere-earth interactions, etc.
 - Human-induced climate change
- Carbon cycle
- Difference between weather and climate
- Impacts of climate change
 - Water resources, hydrologic cycle, other climate change effects
 - o Biosphere implications, ocean acidification, sea level rise
 - Implications on soil, agriculture
 - Economics and social aspects of climate change
 - Climate element to environmental consulting and hydrogeology as well as petroleum exploration

Natural Resources

- Understanding of what is included in "natural resources"
 - Economic geology (commodities and finite resources)
 - o Energy, water, minerals, geologic materials
- Solid vs. liquid resources, geographic distribution, uses
- Ecosystem services, analysis of renewable and non-renewable (finite) resources
- Resource dependency and limits
 - Finite resource or commodity
 - Understanding your environment (where do our materials, energy, and medicines come from)
 - \circ $\,$ Ore and fossil fuel supply and demand and getting it to market
 - o Time and space scale of formation and depletion, sustainability
 - o Economics and viability of resources
 - How things are made
 - Process from ore to refined product
 - Process from fossil fuel to energy or material objects

Surface Processes

- Sediment deposition & erosion
 - o Stream/River flow, morphology, deposition, erosion, effect of floods
 - Transport relationships (all surface processes)
 - o Magnitude and frequency relationships of surficial deposits
 - o Subsurface analogs
- Terrestrial and marine surface interactions
 - o Biological, chemical, and physical interactions
 - Rates of chemical and physical changes
- Landscape alteration (geomorphology)
 - Surface mechanical and chemical processes
 - Karst formation
 - o Glacial till and overburden thickness
- Habitability, sustaining life
 - Ties to natural hazards

Earth Materials

•

- What is a rock, mineral? Rock cycle
 - Rocks: physical and chemical properties
 - How measure, scale of measurement
 - Mechanical characteristics
 - Scales of heterogeneity
 - How change over time
- Processes that form rocks and minerals
 - Processes and conditions of formation
 - o Localizing mechanisms for deposits
 - Fluid dynamics, flow and fluid chemistry
 - Role of microbiology and organisms
- Resource applications, organic-inorganic materials

Earth Structure

• Structure of Earth

- Mechanical and compositional layers
- Tools for defining earth structure (seismic waves, analysis of earthquakes, etc.)
- Deformation
 - Stress and strain
 - Rock mechanics & deformation processes
 - Fractures, faults, folds, other structural features, etc.
- Plate Tectonics, including
 - Basin formation
 - Episodic nature, planning perspectives, uncertainty
- Structural controls on resource accumulations

Hydrogeology

- Water cycle
- Groundwater/aquifers, confined vs unconfined aquifers
 - Phase behaviors
 - Saturated vs unsaturated conditions
 - Scales of heterogeneity in space and time
 - Contaminant transfer
- Biogeochemistry and aqueous geochemistry
 - Microbe interactions
 - Nutrient cycling
- Subsurface-surface water interactions
- Economics and public policy
 - Groundwater quality
 - Regulatory standards

Technical and nontechnical skills: Identified primarily by 1st Summit, validated by survey, and granularity and additions by Geoscience Employers Workshop

Geoscience Thinking

- Earth Science habits of mind/geoscientific thinking
 - Temporal and spatial thinking
 - o Systems thinking
 - o Geologic reasoning and synthesis
- Problem solving in the context of an open and dynamic system
 - \circ Understand context of problem
 - Asking appropriate questions
 - Problem solving in 3- and 4-D
 - o Ability to work on problems with no clear answers
 - Managing uncertainty in problem solving
 - Have a passion for solving problems
- Working by analogy, inference and the limits of certainty
- Intellectually flexible applying skills in new scenarios

Technical Skills

- Problem Solving with data
 - Data collection and interpretation, use and application of data
 - o Begin with understanding of how data will answer question, purpose of collecting data

- Evaluation of data, data quality
- Understanding data and uncertainties
- Make predictions with limited data
- \circ Use of appropriate methods, reading and interpreting graphs
- Quantitative/Math skills integrate into geo courses throughout
 - Differential equations/linear algebra
 - Probability and statistics (so understand risk)
 - Understanding of scale
 - Computer programming skills (think about how to solve a problem computationally)
- Experience with authentic research, collection of new information
- Critically evaluate literature, encourage critical thinking

Field and Technology Skills

- Field Camp and Field Experiences
 - o Improves spatial cognition, creative problem solving, teamwork, geoscience synthesis
 - Data supports field skills are unique and essential, difficult to replicate or substitute
- GIS Most essential for building large data sets
- Data Analysis Skills
 - Ability to handle and analyze Big Data
 - Use of visual models, modeling tools (Stella, Modflow, Matlab, etc.)
 - o Integration of technical and quantitative skills, programming, application development
- Technological diversity (need skills and training beyond point, click, and type) i.e. not just black box
- Preparation for life-long learning
 - \circ $\;$ How to learn and use new technology and software

Non-technical Skills

- Oral and written communication competency
 - Science writing and verbal communication; knowing your audience
 - Public speaking
 - Listening skills
- Project management
 - Ability to work in teams
 - Be a leader and follower
 - Don't divide work; iterative process between students with different backgrounds/disciplines
 - o Goal setting
 - Solution-oriented approaches
 - Conflict resolution (open minded answer may lie in the conflict space)
 - Managing problems on the front end
 - Time management
- Professionalism, interpersonal skills
 - Ethics, ethical awareness, codes of conduct, awareness of implicit biases
 - o Business acumen and risk management
 - o Cultural interactions, cultural literacy, emotional literacy, learning styles
 - Leadership
 - o Career awareness/resume/interview preparation
- Global perspective
- Understand societal relevance