

KYLE T. SPIKES Research Group

THE UNIVERSITY OF TEXAS AT AUSTIN

WELCOME TO THE MEETING

- Welcome everyone!
- Currently we have 8 PhD and 3 MS students in total
- Presentations today cover a variety of topics in various stages of development
- Collaborator, Nicola Tisato, is currently building his laboratory, to be and running sometime this year
- Integrating his work with EDGER work is in the plans

Group Members

- Kyle T. Spikes, Associate Professor
- Dr. Kelvin Amalokwu, Post-Doctoral Fellow
- Mr. Tom Hess, Research Engineering Scientist Associate

Student Members

- 1. Elliot Dahl, PhD Student (EDGER)
- 2. David Tang, PhD Student (EDGER)
- 3. Wei Xi, PhD Student (EDGER)
- 4. Michael McCann, MS Student (EDGER)

Funding

- Effective medium model of shale properties: BP (PI: Spikes)
- Big data challenges subsurface fracture characterization: NSF (Wheeler and Sen)
- EDGER

CURRENT WORK – ELLIOT DAHL

P-wave velocity

6

CURRENT WORK – ELLIOT DAHL P-wave dispersion

CURRENT WORK – DAVID TANG

Energy Dispersive X-ray Spectroscopy (EDS)

Carbon

Silicon

Potassium

Sodium

Aluminum

Sulfur

Calcium

RGB Composite

CURRENT WORK – DAVID TANG Segmentation Results

CURRENT AND ONGOING WORK

- Unconventionals
- Segmentation-less digital rock physics
- Probabilistic rock physics templates

UNCONVENTIONALS

P-Impedance

S-Impedance

UNCONVENTIONALS

Top of Eagle Ford

Figure 13. (1) Visualization of the RSG model where A is a predefined homogenous solid in which the $400 \times 400 \times 400$ size volume is embedded. The plane wave propagates in z direction. (2) Visualization of the V_p in a sample containing roughly 7 % of hydrate. (3) Visualization of the V_p in a sample bearing 17 % of hydrate where the V_p is significantly higher due to the increased hydrate bulk.

Typically, segmentation-based DRP overestimates velocities.

Sell et al., 2016, Solid Earth

Can we eliminate segmentation?

(At least for ~mono-mineralic rocks)

The premise:

- 1) Using "ghosts" or targets with known densities, we can calibrate our CT imagery to obtain a density model;
- 2) For mono-mineralic rocks, density can be easily translated to porosity;
- 3) Total density and porosity should match density and porosity from laboratory measurements.

The concept:

 Each voxel can be considered as an elementary volume whose effective elastic properties can be described by effective medium theory, e.g. Hashin-Shtrikman;
 Thus the model does not depend upon the geometry of pores and grains but rather upon the distribution of porosity.

Gray Level to Density

Air AISI304 Al alloy

In addition, the rock is a target as we know its average density:

Sample

Applied the calibration formula to a sub-sample ~22x12 mm

Calculated density: 2038 kg/m³ (-1.1% measured, ~error)

 $\rho_{qtz} = 2650 \text{ kg/m}^3$ $\rho_L = \text{voxel density}$ $\Phi_L = 0 \text{ for } \rho_L \ge \rho_{qtz}$ $\Phi_L = 1 \text{ for and } \rho_L = \rho_{air}$

$$\Phi_{\rm L} = \frac{Vol_p}{Vol_g} = 1 - \frac{\rho_L}{\rho_{qtz}}$$

Calculated total porosity 0.23 (~+8%)

Modified upper Hashin-Strikman bound (Nur et al., 1991, 1995) with critical

100 [GPa] 20 20 20 20 20 20 20 20 20 20 20 20 20		1	-	 K HS⁺ K mod. F μ HS⁺ μ mod. F 	
nd Shear (µ) n 05 07		11111			
Bulk (K) and 0 0	0.2	0.4 đ	0.6	0.8	1

Note: ~3% of the voxels had $\Phi_L > \Phi_C$. Φ_L forced to be = Φ_C Quartz density (ρ_{qtz})2650kg/m³Quartz Bulk modulus (K_{qtz})36GPaQuartz Shear modulus (G_{qtz})44GPaCritical porosity (Φ_c)0.38

- Sofi3D to propagate elastic waves (Bohlen, 2002, Computers and Geosciences);
- Compressive wave generated at Z=0 mm (f=1MHz, sin³);
- Measured the arrival time. Average of the displacement at Z=19.96 mm.

Note: The modified upper Hashin-Shtrikman bound calculated on the entire sample (i.e,. only considering Φ and not Φ_L) provided a *P*-wave velocity of 3680 m/s.

CONVENTIONAL ROCK PHYSICS TEMPLATE

Establish a range of models that qualitatively explains the elastic properties as a function of the rock properties.

In this case, lithology, porosity and saturation are the most dominant rock properties.

We then argue that the model does a decent job of explaining the data.

What about the uncertainty or error in the model?

PROBABILISTIC ROCK PHYSICS TEMPLATE

PROBABILISTIC ROCK PHYSICS TEMPLATE

How do you fill the model space?

How do you determine how many distributions to have?

How much overlap or lack thereof should occur from one distribution to the next?

CLASSIFICATION OF LOG DATA

IMPLICATIONS

Integrate inverted seismic data with rock physics models for quantitative seismic interpretation.

Combine rock physics information with seismic information through Bayesian classification techniques.

Account for non-unique relationships between rock and elastic properties.

SIMULATION OF THE 5 FACIES

INVERTED SECTIONS

BAYESIAN CLASSIFICATION FOR MOST LIKELY FACIES

BAYESIAN CLASSIFICATION AND PROBABILISTIC MODELS

BAYESIAN CLASSIFICATION AND PROBABILISTIC MODELS

BAYESIAN CLASSIFICATION AND PROBABILISTIC MODELS

SUMMARY

- Current research activities in
 - Reservoir characterization
 - Digital rock physics
 - Dispersion and attenuation modeling
 - Probabilistic RPTs
- Incoming students will take part in these continuing and in new areas
- Collaborator, Nicola Tisato, is currently building his laboratory, to be and running sometime this year
- Integrating his work with EDGER work is in the plans