Machine Learning:
Some applications
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Machine Learning

* Machine Learning is a branch of computer science

* |t gives computers the ability to learn without being
explicitly programmed. (Samuel 1959)

* Evolved from the study of pattern recognition and
computer learning theory in artificial intelligence

* Machine learning explores the study and construction
of algorithms that can learn from and make
predictions on data




Inversion and Machine Learning

Data Vector: d=[d,d, d,..d]
Model Vector m=[m,m, m,...m,, | Unknown!
Forward Modeling d=g(m)
Linear d=Gm
In General n#m
Non-linear Problem —
Liarbrbien o [G'G] 0. ot et

least squares solution



Machine Learning

Forward Modeling operator is unknown!
Goal: Find an operator that can be applied to the data to estimate models

Find the operator by systematic examination of a series of observed data
and their known answers. Learn from experience! TRAINING

m = Fd

est

TRAINING
- Supervised

- Unsupervised



Supervised and Unsupervised Learning

 Machine Learning is a class of algorithms which is data-driven, i.e. unlike
"normal” algorithms it is the data that "tells" what the "good answer" is.

 Example: a hypothetical non-machine learning algorithm for face detection
in images would try to define what a face is (round skin-like-colored disk,
with dark area where you expect the eyes etc).

A machine learning algorithm would not have such coded definition, but
would "learn-by-examples": you'll show several images of faces and not-
faces and a good algorithm will eventually learn and be able to predict
whether or not an unseen image is a face.

* This particular example of face detection is supervised, which means that
your examples must be labeled, or explicitly say which ones are faces and
which ones aren't.



Supervised and Unsupervised Learning

* In an unsupervised algorithm your examples are not labeled, i.e. you don't say
anything. Of course, in such a case the algorithm itself cannot "invent" what a
face is, but it can try to cluster the data into different groups, e.g. it can
]glistinﬁuish that faces are very different from landscapes, which are very different

rom horses.

* there are "intermediate” forms of supervision, i.e. semi-supervised and active
learning. Technically, these are supervised methodsin which there is some
"smart" way to avoid a large number of labeled examples.

* In active learning, the algorithm itself decides which thing you should label (e.g. it
can be pretty sure about a landscape and a horse, but it might ask you to confirm
if a gorillais indeed the picture of a face).

* |In semi-supervised learning, there are two different algorithms which start with
the labeled examples, and then "tell" each other the way they think about some
large number of unlabeled data. From this "discussion" they learn.




History of Machine Learning

* Neural Networks (1960)

* Multi-layer Perceptions (1985)

* Restricted Boltzman Machines (1986)

e Support Vector Machine (1995)

* Deep Belief Networks — New interest in deep learning (2005)
* Deep Recurrent Neural Network (2009)

e Convolutional DBN (2010)

* Max Pooling CDBN (2011)



Mapping

Generalization of Function

 Mapping: A
In vector spaces and

that associates each vector X of a vector
space R" with a vector Y in another vector

space ‘R".
3 _yl =f1(x1,x2,...,x”) |

Y=F(X)
V, = fo(X,X,,..0,X,)

X ={x,x,,...,x },eR" r =

Y ={y,Yys0r V1 €R"

_ym = fm(x15x2"“?xn)_



‘ NN - Continuous Input to Output Mapping

Multilayer Perceptron: Feed Forward, Fully Connected

Nonlinear Linear

.I. Neurons Neurons X., Neuron

Linear Part iNonIinear Pa
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Some Popular Activation Functions
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EXAMPLE 1

Calderon-Macias and Sen



NMO Correction in T-p domain

Moveout Equation

At(p) = A (0)(1 - p*v})'"*

Measure of Goodness T
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Steps

 The input data of the FNN are tau-p—transformed CMP gathers at selected
control locationsin a seismic line.

* The number of input elements of a single training example is given by the
number of p-traces and the number of samples per trace (L =M x N).

* Network weights and sigmoid activation functions map the input data into
interval velocities, the network outputs.

* Velocitiescan be described by a fixed number of layers of known two-way normal
traveltime, by spline coefficients, or by some other smooth representation.

* The number of velocity layers or spline coefficients used to define the 1-D
velocityk-time functions gives the number of neuronsS in the output layer of the
network.

* The limits of the activation functionsin the network output are given by the
search limits of each output parameter.



* Weights are firstinitialized with random numbers between—1 and 1.

* Once a set of input vectors have been mapped by the FNN to network
outputs, a velocity-time function per input vector, the data are NMO
corrected and the error evaluated.

* Notice that the erroris not obtained directly from the FNN output but
from the NMO-corrected data.



Optimization

CMP data in T-p domain

l

Veloclty = FNN(W' D‘n)

Prediction

Final weights

l

Weight update

1-p NMO

l

Error evaluation

'
E >E dulred)
l

Final weights

New CMP data

|

Velocity = FNN(W, Data)

l

T-p NMO

Stack section

FIG. 2. Flow chart of the automatic NMO-correction method using FNNs.




Synthetic Example

Distance (km)
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FIG. 3. Velocity model plotted in time. A velocity log is shown at the middle of the model.
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Fic. 5. Training history éeneraled from NMO-correcting 11
MP gathers.
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FiG. 7. Improved NMO-correction results after adding four examples for training from the edges of the model.
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Field Data Example
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FiG. 11. Near trace section from the Carolina Trough data set.
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FIG. 12. Typical CMP gather from line BA6 (left) and its 7-p transform (right).
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FIG. 13. Velocity search limits used for automatic NMO correction for the fist FNN (left) and second and third
FNNs (right). Circles indicate the location of the spline nodes.
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With massive amounts
of computational
power, machines can
now recognize objects
and translate speech
in real time. Artificial
intelligence is finally
getting smart.
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Temporary Social
Media

Messages that quickly
self-destruct could
enhance the privacy of
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]
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CNN

* CNNs are simply neural networks that use convolution in place of
general matrix multiplication in at least one of the layers!

* In a traditional NN, every output unit interacts with every input unit.

* CNNs typically have sparse interactions accomplished by making the
kernel smaller than input. Storage of fewer parameters and fewer

operations!



Basic Architecture

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)




There are four main operations in the ConvNet shown in Figure above:
* Convolution

* Non Linearity (ReLU) [Rectified Linear Unit]
* Pooling or Sub Sampling
e Classification (Fully Connected Layer)



Convolution

* ConvNets derive their name from the “convolution” operator.

* The primary purpose of Convolution in case of a ConvNet is to extract
features from the input image.

* Convolution preserves the spatial relationship between pixels by
learning image features using small squares of input data.

* We will not go into the mathematical details of Convolution here, but
will try to understand how it works over images.

1/1/1,0|0 1 0 1 S—
o/1/1,1|0 0|1/1]1]0]| |4]3]4
0/ 0111 0 1 0 0(01 |11 [2]|4]|3
0/0|1)1/0] [2]|3|4
0/ 0|1 1|0 1 0 1 o[1]1/0]0,
o[1]1]0]0 e

Filter or Kernel Feature map



Terms

Depth: Depth corresponds to the number of filters we use for the
convolution operation.

Feature Map having

|
T . depth of 3 (since 3
filters have been used)
Feature Map
r—l( -
T, .. ] ]
-'_ -D | J—— T

Convolution
Operation

Stride: Stride is the number ot pixels by which we slide our filter matrix
over the input matrix. When the stride is 1 then we move the filters

one pixel at a time.

Zero-padding: Sometimes, it is convenient to pad the input matrix with
zeros around the border, so that we can apply the filter to bordering
elements of our input image matrix. A nice feature of zero padding is
that it allows us to control the size of the feature maps.




Relu

RelLU %cands for Rectified Linear Unit and is a non-linear operation. Its output s
given by:

Output = Max(zero, Input)

RelU is an element wise operation (applied per pixel) and replaces all negative pixel
values in the feature map by zero.

The purpose of RelLU is to introduce non-linearity in our ConvNet, since most of the
real-world data we would want our ConvNet to learn would be non-linear
(Convolutionis a linear operation — element wise matrix multiplication and

addit)ion,so we account for non-linearity by introducinga non-linear function like
RelLU).

Other non linear functions such as tanh or sigmoid can also be used instead of
RelLU, but ReLU has been found to perform betterin most situations.



Pooling

* Spatial Pooling (also called subsampling or downsampling) reduces
the dimensionality of each feature map but retains the most
important information. Spatial Pooling can be of different types: Makx,
Average, Sum etc.

* In case of Max Pooling, we define a spatial neighborhood (for
example, a 2x2 window) and take the largest element from the
rectified feature map within that window. Instead of taking the largest
element we could also take the average (Average Pooling) or sum of

all elements in that window. In practice, Max Pooling has been shown
to work better.




Pooling applied

Convolution separately on each
using 3 filters feature map
+ RelU

Rectified

Input Image Feature Maps




The function of Poolingis to progressively reduce the spatial size of the input
representation.

In particular, pooling makes the input representations (feature dimension)
smaller and more manageable

reduces the number of parameters and computationsin the network, therefore,
controlling overfitting

makes the network invariant to small transformations, distortions and
translations in the input image (a small distortionin inputwill not change the
output of Pooling — since we take the maximum / average value in a local

neighborhood).

helps us arrive at an almost scale invariant representation of our image (the exact
term is “equivariant”). This is very powerful since we can detect objects in an
image no matter where they are located.




Story so far

1st 1st 2nd 2nd
Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

1

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

-

the 2nd Convolution layer performs convolution on the output of the first Pooling Layer using
six filters to produce a total of six feature maps.

RelLU is then applied individually on all of these six feature maps.
We then perform Max Pooling operation separately on each of the six rectified feature maps.

The output of the 2nd Pooling Layer acts as an input to the Fully Connected Layer,



Fully Connected Layer

* The Fully Connected layer is a traditional Multi Layer Perceptron that uses a
softmax activation functionin the output layer (other classifiers like SVM
can also be used, but will stick to softmax in this post). The term “Fully
Connected” implies that every neuronin the previous layer is connected to
every neuron on the next layer.

* The output from the convolutional and pooling layers represent high-level
features of the input image. The purpose of the Fully Connected layer is to
use these features for classifying the inputimage into various classes based
on the training dataset.

* The sum of output probabilities from the Fully Connected Layeris 1. This is
ensured by using the Softmax as the activation function in the output layer
of the Fully Connected Layer. The Softmax function takes a vector of
arbitrary real-valued scores and squashes it to a vector of values between
zero and one that sum to one.




Convoluton Pooling
Fier Layer
Convoluton Pooling
Filter Layer

Softmax Functon



Tralning

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected
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Feature Extraction from Image Classification




Application

e 1D Seismic Deconvolution problem
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Convolution forward problem

Output 1
0.4 I | P T
0.2 -
0 Wf‘
-0.2 -
-0.4 l | | L
0 0.05 0.1 0.15 0.2
Time(s)
Input 1

-

-0.1F V
-0.2 :

| | |
0 0.05 0.1 0.15 0.2
Time(s)



CNN

500 1000 1500 2000
Iteration



Reflectivity Section

Time(s)

20 40 60 80 100
Trace

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2



Time(s)

20

Trace Section

40 60
Trace

80

100



Test

Output 17

0.2

I I I I

| | |

-0.2

0.05

0.1 0.15 0.2
Time(s)
Input 17

0.4

0.2 -

-0.2 -

I I |

| | |

-0.4

0.05

0.1 0.15 0.2
Time(s)



Reflectivity Section
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Hopefield Neural Network (HNN) and Mean
-ield Annealing (MFA)

* A Hopfield network is a single-layer feedback network whose
dynamics are governed by a system of nonlinear ordinary differential
equations and by an energy function.

* A basic artificial neuron has many inputs and weighted connections.

xi(t+1)= H( Z wi;X; (1) +¢'s)

i#j=1

* where x:can take the values 1 (on) or 0 (off) and H 1s the step function
known as the activation function of the network.



Hopefield Neural Network (HNN) and Mean
-ield Annealing (MFA)

* Energy function  ,_ __i_z Z - _i@.‘
i=1

=l i#j=1

* The term energy function comes from a physical analogy to magnetic
systems. In phklsics, the above equation is described as the Ising
Hamiltonian of n interacting spins

* A central property of the Hopfield network is that given a starting point for
the neurons, the energy will never increase as the states of the neurons
change provided that w is a symmetric matrix with zero diagonal elements.

* Thus, one of the most important uses of a Hopfield network is in an
optimization problem in which the cost function of the optimization
problem is related to the energy function.

(Calderon-Macias and Sen)



1) Initialize the temperature T to the initial temperature To.]  The reflectivity estimator is defined by two
2) Initialize mean field variables and add random value: Hopfield networks:

v, =1/24rand (i) fori =1,n
3) Startloop:i =1.n « the first network detects time positions

N E w;v; + @

» of aspecific amplitude in the trace and

i * the second refines the amplitude of these
positions
. h

4) Decrease T and repeat step (3) until error remains con-
stant for a number of iterations.

FiG. 1. Mean field annealing algorithm,



Synthetic Data Example

T

1

\f\/_ ) | » Synthetic experiment: (a) Wavelet; (b)
reflectivity series;

*\L'L—*—r—u—ﬁ—’h—v—v—"—* I b) . %c% syntheticseismogram from convolving

a) and (b) with8% of noise added,;

““J\/\/\NVW\/\/"\/‘W“‘ 9 » (d) detected spike positions (+ symbol)for

-1 . | | | . an amplitude of one using MFA. In solid
0o 1 0z 03 04 05 o8 o7 o8 line the true reflectivityis plotted and is
Time (s) the same in all subsequentplots;

¥ ' — 7§ T f * (e)computed amplitudesfrom (b) using
AR . N N ) - * (f) computed reflectivity series obtained
with MFA (o symbol) after sweeping
Im%ﬁumﬂb_&_gﬂ_ﬂiﬂ ) - amplitudes from [-11];

. Local rule * (g) final reflectivity series obtained with
Y 9 the Hopfield local updaterule (* symbol).
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Unsupervised learning



Artificial immune-based self-organizing maps
for seismic-facies analysis (Saraswat and Sen)

* Seismic facies analysis is the term sed for the process of extraction
and interpretation of useful information related to seismic reflection
parameters including geometry, envelope, continuity, and coherence.
(Mitchum, 1977)

* cluster and discriminant analysis,
e Bayesian classification,

* neural network, and

e support vector machines.

Saggaf et al. (2003), Li and Castagna (2004), Jin, Sen and Stoffa (2009),
Taner et al., 2001; Matos et al., 2003a, 2003b, 2004, Roy et al., 2010).



Self Organizing Maps (SOM)

* Application of SOM to seismic facies analysis requires utmost care because noise
in the data set may give rise to unrealistic features.

* Thus, an SOM-based facies map derived from noisy seismic data may not be
representative of subsurface geologic features (Matos et al., 2007).

 SOM is very memory intensive (Kurdthongmee, 2008).

* We first subject the seismic data to an artificial immune system (AIS), which s a
robust data- cIusterlng procedure that also reduces dimensionality.

We use a hybrid trace waveform classification algorithm which combines AlS and
SOM, termed AI-SOM, that takes advantage of these algorithms. In particular, the
numbers of classes or clusters in a data set are initially detected using an artificial
immune system, which results in reductionin dimensionality. This is followed by
classification of facies using self-organizing maps (Roy et al., 2010), facilitating
extraction of high-level information from clusters in the data.
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Figure 2. Anificial immune network classification: (a) Input data set with two classes of chain links (from de Castro 2002); (b) histogram plot
of the memory matrix where valleys are identified as number of clusters; (¢) network dendrogram showing two major classes with further
subdivision and their intercell affinities: (d) final network structure, ie., reduced data set.



Figure 5. Flowchart representing workflow of AI-SOM method for
seismic facies analysis.
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Figure 7. Input seismic data to AlS algorithm to prove the efficacy
of AIS for data reduction.
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Figure 8. Result from AIS over input seismic data shown in
Figure 6. The dimensionality is reduced from (70 x 70 x 20) to
(70 x 70 x 12). It i1s also evident from the result that most of the
features are preserved while reducing the data set.



Crossline

Figure 11. Final facies map generated after SOM clustering; various depositional and
structural features such as channels. splays. and faults are identified. The color code for
different clusters is shown in Figure 10c.



Using “Feature Selection” to Improve the
Probabilistic K-nn Bayesian Classification Method



Background

* A data classification method that is designed to estimate pore fluid type.

* |[n practice, this method will use Vp, Vs, density, porosity and pore fluid
type information from well logs to estimate pore fluid typein an earth
model where Vp, Vs and density have already been estimated by seismic
inversion.

* Our method is basedon the probabilistic nearest neighbor (k-nn) method,
but also incorporates feature selection and nonlinear regression.

e To improve upon the standard k-nn method, we incorporate a regression
app%oachdba}sed on the Bayesian MARS model to estimate porosity in the
earth model.

* Additionally, we utilize a feature selection method that automatically
generates various data combinations and evaluates their usefulness for
classification.



Background

* A Bayesian approach to multivariate adaptive regression spline
(MARS) fitting (Friedman, 1991) is used.

* This takes the form of a probability distribution over the space of
possible MARS models which is explored using reversible jump
Markov chain Monte Carlo methods (Green, 1995; Sen and Biswas
2017).



Background

Definitions:

1.

2.

Training Data: a subset of the data where data class (e.g., pore fluid type) is
known in additionto one or more indicatorvariables (e.g., V,, Vs, and p)

Test Data:the remainder of the data where the indicators are known but

’(cjhe dataclassis not. The goal is to “solve” for the class using the indicator
ata.

The Probabilistic k-nn algorithm:

1.

Calculatea “ ” between each combination of indicatorsin the
Training Data (where class is known) and each combination of indicatorsin
the Test Data (whereclass is not known).

For each data pointin the Test Data, choose k points from the Training Data
with the smallest “ ”

Perform a Reverse-Jump Markov-Chain Monte-Carlo (RIMCMC) analysis
using the k nearest points and uninformative priors. By recording how often
each of these points (and the data classes they represent) are accepted
during the RIMCMC run, one can determine the probability of each data
class at every pointin the Test Dataset.



New Method

GOAL: take the “Probabilistic k-nn” method (Holmes and Adames,
2002; Denison et al., 2002.) and improve it by incorporating
elements of “Feature Selection”:

1. Automatically combining and perturbing inputs using addition, subtraction,
multiplication, division, squaring, and square root operations.

2. Automatically calculate a measure of “how well the classes are separated” in

each domain using the training data (overall separation and locally separated
by class and porosity)

3. Select the best overall separated domains to use as input into the
probabilistic k-nn algorithm

4. Modify the RIMCMC part of the k-nn algorithm so that inputs are weighted
based on local separation (a function ojg class and porosity)

SEE ANTONY BARONE’S TALK AT SEG
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Summary

* We have several years of experience in working with machine
learning applications to Geophysical problems

* Time to employ ML to seismic reservoir characterization

* Fractured reservoirs

* We need to work on hyperparameter selections — perhaps rjHMC
* Global optimization for training.



