——

CAHMDA/DAFOH Workshop
Sept 8-12,2014 AR
Austin, TX T

Combined Data Assimilation and Multi-modeling in Seasonal
Hydrologic Forecasting:

A More Complete Characterization of Uncertainty

Remote Sensing and Water Resources Lab

Civil and Environmental Engineering

Portland State

UNIVERSITY



* A general lack of information and skillful
modeling frameworks leads to forecast products
that do not have sufficient ability to be relied
upon on an entirely deterministic manner.

* Uncertainty is pervasive ThroughouT hydr'ologlc
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Difficulties in Hydrologic Predictions

»  Space-time variability of climatic inputs

» Heterogeneity of the land surface condition:
vegetation, land use, solls, snow extent, etc.

» Selection of one or multiple plausible model/s
that can provide reliable and skillful prediction
under all circumstances



Global Optimization or Ensemble Inference / Data Assimilation?

Parameter Estimation: Improve estimates of a set of poorly known model
parameters leading to a model solution that is close to the measurements.

= All errors in the model are associated with uncertainties in the
selected model parameters.

= The model initial conditions, boundary conditions, and the model
structure are all exactly known

State Estimation using Data Assimilation: Defined as finding the estimate
of the model state that in some weighted measure best fits the observation,
the initial and boundary conditions.

Combined Parameter and State Estimation: An improved state estimate
and a set of improved model parameters are searched for simultaneously.



Limitations of Most Calibration Techniques

» In the case of insufficient availability of historical
data (e.g. ungauged or recently gauged basins)
batch calibration cannot be properly applied

» Incapability in investigating the possible temporal
variations of model parameters

» Non-uniqueness of solution (lll-posed inverse problem)

» Mostly provide just a single solution ignoring the
uncertainty sources



Some Benefits of Data Assimilation

» Provides a framework for quantifying uncertainty

» Can be used to calibrate models (dual state-

parameter estimation framework)

» Can be used to estimate the uncertainty in system

states for initializing the forecasts

» Can be used to reduce model uncertainty



Quantifying Uncertainties in Operational Settings

Problem: Current operational streamflow forecasting
system does not yet account for all sources of uncertainty

Goal: Move towards a more complete accounting of all
sources of uncertainty in forecasting system

Meteorological Forcing

Model states/parameters (e.g., Moradkhani et al., 2005; AWR; 2012,
WRR)

Initial Land Surface Condition (DeChant and Moradkhani, 2011, HESS;
2014, JOH)

Hydrologic model structure (Parrish et al., 2012, WRR)



Bayesian Inference

The Prior Probability describes what you first knew.
Multiply this by a term that describes the effect of your new

iInformation, and the result is what you know after you have taken
Into account your new information.

Likelihood

P(X,0|Data)) = [P(X,0)

Posterior Probability Prior Probability Evidence



Ensemble Data Assimilation
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Data Assimilation by the Ensemble Kalman Filter and Particle Filter

= Current Observation
— Current Predictive Bounds
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Particle Filter

Moradkhani et al. 2005, WRR
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Implementation of Sequential Data Assimilation
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Calibration Replicate Method for DA

DeChant and Moradkhani (2012), WRR
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EnKF vs. PF

DeChant and Moradkhani (2012), WRR
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EnKF

» Makes the assumption that

errors are Gaussian and
states/parameters are linearly
correlated with prediction

— Allows for direct adjustment to
states/parameters for
characterizing the posterior
distribution

— Not susceptible to sample
Impoverishment
Hydrologic modeling
problems are typically non-
Gaussian

— Leads to overconfident
predictions

PF

« Most general solution

avallable for data assimilation

= Theoretically more accurate in
the non-Gaussian problems

= Requires extra attention to
avoid sample impoverishment

= Effective adjustment to
parameters is a difficult task

« Results are less overconfident

than the EnKF

= Particle filter approaches
optimal solution



* PF is more reliable than EnKF, but still overconfident
— PF approaches reliable distribution (EnKF does not)
— Parameter distribution tends to be overconfident
— Requires large ensemble size to avoid overconfidence

» Need larger parameter moves
— This is difficult to achieve without moving parameters outside posterior

« Two solutions
— Automatic tuning of parameter perturbation value
 Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH]

— Ensure parameters remain within posterior

« Markov Chain Monte Carlo step can reject poor parameter moves
[Moradkhani et al., 2012, WRR]



Variable Variance Multipliers

Leisenring and Moradkhani (2012), JOH

» Automatic tuning of parameter perturbation value
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Evolution of ensemble data assimilation for
uncertainty gquantification using the particle filter-
Markov chain Monte Carlo method

WATER RESOURCES RESEARCH, 2012



Combining Particle Filter with MCMC

Moradkhani et al. (2012), WRR

MCMC Sampling
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Extra Considerations

o Must create effective proposal distribution

= Hp ” — 9+i,t_1 + Ei t—1 5i,t—1~N (O, sVar (e_i,t—1)>

= Tune jump rate “s” with VVM methodology to ensure wide enough
proposal distribution

e Proposal parameter probability is not readily available
= Requires assumption about filtering posterior to include all prior

information (P(Hi,t|y1:t_1))
= Here Gaussian assumption for simplicity
" pe =X whie 1075
= 0% =N awt (071 — Ht)z
e Posterior is proportional to product of likelihood and prior
- P(Hi,tlylzt) o< L(y't — ye|Ri) * N(Qi,t»ﬂt; Uzt)



» Perform state-parameter estimation with PF-SIR, and
PF-MCMC with VVM

— Use time-lagged replicates [DeChant and Moradkhanit,
2012] to increase the number of calibration runs

— Perform experiments in both a calibration and validation
phase

» Calibration tests streamflow prediction during
parameter estimation

» Validation uses stochastic parameter estimates from
calibration

 Perform experiments with HyMod model
— Data from the leaf river basin
— Validate with one day ahead prediction of streamflow




Synthetic Experiment
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Verification using QQ plot
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Predictive QQ plots of the three filters for state-parameter estimation
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Performance Measures in Real Streamflow Data Assimilation
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Typical Streamflow Forecasting Method...

Courtesy of M. Clark
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1. Run hydrologic model up to the start of the forecast
period to estimate basin initial conditions;



Typical Streamflow Forecasting Method...

» |[Forecasts,=——

Historical Data
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1. Run hydrologic model up to the start of the forecast
period to estimate basin initial conditions;

2. Run hydrologic model into the future, using an
ensemble of local-scale weather and climate
forecasts.

a Approach ignores uncertainty in initial conditions as well as
uncertainty in the land model used to produce the forecast



Combining Data Assimilation and ESP
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Study Area-Upper Colorado River Basin
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Seasonal Cumulative Streamflow Prediction
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More complete Characterization of Uncertainty by Data

Assimilation and Multimodeling

Parrish, M., H. Moradkhani, and C.M. DeChant (2012), Towards Reduction of
Model Uncertainty: Integration of Bayesian Model Averaging and Data
Assimilation, Water Resources Research, 48, W03519,
doi:10.1029/2011WR011116.

DeChant C.M., and H. Moradkhani (2014), Toward a Reliable Prediction of
Seasonal Forecast Uncertainty: Addressing Model and Initial Condition
Uncertainty with Ensemble Data Assimilation and Sequential Bayesian
Combination, Journal of Hydrology, special issue on Ensemble Forecasting and
data assimilation, DOI: 10.1016/j.jhydrol.2014.05.045.



Hydrologic Models of Different Complexities...

SAC-SMA

Variable Infiltration Capacity (VIC)
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Sequential Bayesian Combination

Model Averaging
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Combining PF-SBC with ESP

Resampled Historical Forcing
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Modeling Cases

= Two Models

1) Variable Infiltration Capacity (VIC)
= Physically-based distributed model

2) National Weather Service (NWS) models

= Conceptual semi-distributed models

» Three cases for forecast spin-up

1) Open Loop (no assimilation)
2) Passive Microwave Brightness Temperature (IB)

3) Land Surface Temperature (LST) with TB



Combination of DA, Multi-modeling and ESP
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Study Area

Upper Colorado River Basin N

| Wes_tlern USA

Legend
[:] Headwaters
[:] Green
[:] San Juan
E Lee's Ferry

Rivers

Vegetation Type
— Open Shrubland

Dense Forest

Streamflow Gauges




Water Supply Forecasting Experiment

» Generate multiple seasonal (3-month) volumetric streamflow

forecasts for the Upper Colorado River Basin

= Start dates on the 15t and 15% of January through June
= Years of study from 2003 through 2008

. 72 total streamflow forecasts for each location

» Does the DA reduce the overconfidence related to ignoring initial

condition uncertainty?

» Can Sequential Bayesian Combination improve the accounting of

model uncertainty?



Sequential Bayesian Combination Weights




Exceedance Ratios

0.9 4 m99%

0.8 - ®95%
0.7 90%

VIC OL VICTB VICTBLST NWS OL NWSTB NWSTBLST PF-SBC Optimal



Spatially Distributed 99% Exceedance Ratio
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Water Supply Forecasting Conclusions

» ESP produces overcontident seasonal
streamflow forecasts

~ Incomplete accounting of all uncertainty sources

= Data assimilation generally improves reliability,
but remains overconfident

— Model uncertainty not effectively managed

= DA-SBC leads to a most reliable forecasts

— Model itself 1s a major source of uncertainty!



