CAHMDA/DAFOH Workshop Sept 8-12, 2014 Austin, TX

Combined Data Assimilation and Multi-modeling in Seasonal Hydrologic Forecasting: A More Complete Characterization of Uncertainty Hamid Moradkhani Remote Sensing and Water Resources Lab

**Civil and Environmental Engineering** 



- A general lack of information and skillful modeling frameworks leads to forecast products that do not have sufficient ability to be relied upon on an entirely deterministic manner.
  - Uncertainty is pervasive throughout hydrologic forecasting.

#### **Difficulties in Hydrologic Predictions**

- Space-time variability of climatic inputs
- Heterogeneity of the land surface condition: vegetation, land use, soils, snow extent, etc.
- Selection of one or multiple plausible model/s that can provide reliable and skillful prediction under all circumstances

**Parameter Estimation**: Improve estimates of a set of poorly known model parameters leading to a model solution that is close to the measurements.

- All errors in the model are associated with uncertainties in the selected model parameters.
- The model initial conditions, boundary conditions, and the model structure are all exactly known

State Estimation using Data Assimilation: Defined as finding the estimate of the model state that in some weighted measure best fits the observation, the initial and boundary conditions.

**Combined Parameter and State Estimation**: An improved state estimate and a set of improved model parameters are searched for simultaneously.

#### **Limitations of Most Calibration Techniques**

- In the case of insufficient availability of historical data (e.g. ungauged or recently gauged basins) batch calibration cannot be properly applied
- Incapability in investigating the possible temporal variations of model parameters
- Non-uniqueness of solution (III-posed inverse problem)
- Mostly provide just a single solution ignoring the uncertainty sources

## **Some Benefits of Data Assimilation**

Provides a framework for quantifying uncertainty

- Can be used to calibrate models (dual stateparameter estimation framework)
- Can be used to estimate the uncertainty in system states for initializing the forecasts
- Can be used to reduce model uncertainty

## **Quantifying Uncertainties in Operational Settings**

- **Problem:** Current operational streamflow forecasting system does not yet account for all sources of uncertainty
- **Goal:** Move towards a more complete accounting of all sources of uncertainty in forecasting system
  - Meteorological Forcing
  - Model states/parameters (e.g., Moradkhani et al., 2005; AWR; 2012, WRR)
  - Initial Land Surface Condition (DeChant and Moradkhani, 2011, HESS; 2014, JOH)
  - Hydrologic model structure (Parrish et al., 2012, WRR)

## **Bayesian Inference**

The Prior Probability describes what you first knew. Multiply this by a term that describes the effect of your new information, and the result is what you know after you have taken into account your new information.



## **Ensemble Data Assimilation**



#### Data Assimilation by the Ensemble Kalman Filter and Particle Filter



## **Particle** Filter

Forecast (Prior) 
$$p(x_t | Y_{t-1}) \approx \sum_{i=1}^{N} w_t^{i-} \delta(x_t - x_t^{i-}) \qquad x_t^{i-} = f(x_{t-1}^i, \theta, u_t^i) \qquad w_t^{i-} = \frac{1}{N}$$

Analysis (Posterior) Density

$$x_t^{i+} = x_t^{i-} \qquad w_t^{i+} = M \cdot p(y_t \mid x_t^{i-}) w_t^{i-} = \frac{M}{N} p(y_t \mid x_t^{i-})$$

#### Sampling Importance Resampling (SIR)

 $p(x_t \mid Y_t) \approx \sum_{i=1}^N w_t^{i+} \delta(x_t - x_t^{i+})$ 





### **Implementation of Sequential Data Assimilation**



#### Calibration Replicate Method for DA

#### DeChant and Moradkhani (2012), WRR



## EnKF vs. PF

#### DeChant and Moradkhani (2012), WRR



# **EnKF vs. PF**

# <u>EnKF</u>

- Makes the assumption that errors are Gaussian and states/parameters are linearly correlated with prediction
  - Allows for direct adjustment to states/parameters for characterizing the posterior distribution
  - Not susceptible to sample impoverishment
- Hydrologic modeling problems are typically non-Gaussian
  - Leads to overconfident predictions

# PF

- Most general solution available for data assimilation
  - Theoretically more accurate in the non-Gaussian problems
  - Requires extra attention to avoid sample impoverishment
  - Effective adjustment to parameters is a difficult task
- Results are less overconfident than the EnKF
  - Particle filter approaches optimal solution

# What's New?

- PF is more reliable than EnKF, but still overconfident
  - PF approaches reliable distribution (EnKF does not)
  - Parameter distribution tends to be overconfident
  - Requires large ensemble size to avoid overconfidence
- Need larger parameter moves
  - This is difficult to achieve without moving parameters outside posterior
- Two solutions
  - Automatic tuning of parameter perturbation value
    - Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH]
  - Ensure parameters remain within posterior
    - Markov Chain Monte Carlo step can reject poor parameter moves [*Moradkhani et al.*, 2012, WRR]

### Variable Variance Multipliers





••• Observation Interquartile •••• Expected Value •••• Uncertainty Bound (ub) •••• Residual ( $\hat{\varepsilon}$ )

$$ub_{t} = \begin{cases} \overline{y'_{t}} - y'_{t}^{75} & \text{if} \quad \overline{y'_{t}} > y_{t} \\ y'_{t}^{25} - \overline{y'_{t}} & \text{if} \quad \overline{y'_{t}} < y_{t} \end{cases}$$
$$\hat{\varepsilon}_{t} = \left| \overline{y'_{t}} - y_{t} \right|$$
$$er_{t} = \tau \left( median \left( \frac{\hat{\varepsilon}_{(t-lag):t}}{ub_{(t-lag):t}} \right) - 1 \right) + 1$$
$$s_{t} = er_{t} \times \overline{s_{(t-lag):t}}$$

 $S_t$ : updated variance multiplier

### Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method

WATER RESOURCES RESEARCH, 2012

#### **Combining Particle Filter with MCMC**



## **Extra Considerations**

• Must create effective proposal distribution

• 
$$\theta^{p}_{i,t} = \theta^{+}_{i,t-1} + \varepsilon_{i,t-1} \qquad \varepsilon_{i,t-1} \sim N\left(0, sVar\left(\theta^{-}_{i,t-1}\right)\right)$$

- Tune jump rate "s" with VVM methodology to ensure wide enough proposal distribution
- Proposal parameter probability is not readily available
  - Requires assumption about filtering posterior to include all prior information  $(P(\theta_{i,t}|y_{1:t-1}))$
  - Here Gaussian assumption for simplicity

• 
$$\mu_t = \sum_{i=1}^N w_{i,t-1}^+ \theta_{i,t-1}^-$$

• 
$$\sigma_{t}^{2} = \sum_{i=1}^{N} w_{i,t-1}^{+} (\theta_{i,t-1}^{-} - \mu_{t})^{2}$$

- Posterior is proportional to product of likelihood and prior
  - $P(\theta_{i,t}|y_{1:t}) \propto L(y'_t y_t|R_k) * N(\theta_{i,t}, \mu_t, \sigma_t^2)$

# Experiment

- Perform state-parameter estimation with PF-SIR, and PF-MCMC with VVM
  - Use time-lagged replicates [*DeChant and Moradkhani*, 2012] to increase the number of calibration runs
  - Perform experiments in both a calibration and validation phase
    - Calibration tests streamflow prediction during parameter estimation
    - Validation uses stochastic parameter estimates from calibration
- Perform experiments with HyMod model
  - Data from the leaf river basin
  - Validate with one day ahead prediction of streamflow

## Synthetic Experiment



## Verification using QQ plot



#### Predictive QQ plots of the three filters for state-parameter estimation



#### Performance Measures in Real Streamflow Data Assimilation



#### **Typical Streamflow Forecasting Method...**



1. Run hydrologic model up to the start of the forecast period to estimate basin initial conditions;

#### **Typical Streamflow Forecasting Method...**



- 1. Run hydrologic model up to the start of the forecast period to estimate basin initial conditions;
- 2. Run hydrologic model into the future, using an ensemble of local-scale weather and climate forecasts.



Approach ignores uncertainty in initial conditions as well as uncertainty in the land model used to produce the forecast

## **Combining Data Assimilation and ESP**



Spin-Up Start

Forecast End

## **Study Area-Upper Colorado River Basin**

DECT



#### **Seasonal Cumulative Streamflow Prediction**



Parrish, M., H. Moradkhani, and C.M. DeChant (2012), Towards Reduction of Model Uncertainty: Integration of Bayesian Model Averaging and Data Assimilation, *Water Resources Research*, 48, W03519, doi:10.1029/2011WR011116.

DeChant C.M., and H. Moradkhani (2014), Toward a Reliable Prediction of Seasonal Forecast Uncertainty: Addressing Model and Initial Condition Uncertainty with Ensemble Data Assimilation and Sequential Bayesian Combination, *Journal of Hydrology*, special issue on Ensemble Forecasting and data assimilation, DOI: 10.1016/j.jhydrol.2014.05.045.

### Hydrologic Models of Different Complexities...







#### Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model



PRMS



## **Sequential Bayesian Combination**



## **Combining PF-SBC with ESP**



Spin-Up Start

**Forecast Start** 

Forecast End

# **Modeling Cases**

- Two Models
  - 1) Variable Infiltration Capacity (VIC)
    - Physically-based distributed model
  - 2) National Weather Service (NWS) models
    - Conceptual semi-distributed models
- Three cases for forecast spin-up1) Open Loop (no assimilation)
  - 2) Passive Microwave Brightness Temperature (TB)
  - 3) Land Surface Temperature (LST) with TB

## **Combination of DA, Multi-modeling and ESP**



# **Study Area**



## Water Supply Forecasting Experiment

- Generate multiple seasonal (3-month) volumetric streamflow forecasts for the Upper Colorado River Basin
  - Start dates on the 1<sup>st</sup> and 15<sup>th</sup> of January through June
  - Years of study from 2003 through 2008
  - 72 total streamflow forecasts for each location
- Does the DA reduce the overconfidence related to ignoring initial condition uncertainty?
- Can Sequential Bayesian Combination improve the accounting of model uncertainty?

#### **Sequential Bayesian Combination Weights**



## **Exceedance** Ratios



### **Spatially Distributed 99% Exceedance Ratio**



## Reliability



## Water Supply Forecasting Conclusions

- ESP produces overconfident seasonal streamflow forecasts
  - Incomplete accounting of all uncertainty sources
- Data assimilation generally improves reliability, but remains overconfident
  - Model uncertainty not effectively managed
- DA-SBC leads to a most reliable forecasts
  - Model itself is a major source of uncertainty!