
Combined Data Assimilation and Multi-modeling in Seasonal 

Hydrologic Forecasting: 

A More Complete Characterization of Uncertainty 

Hamid Moradkhani

Remote Sensing and Water Resources Lab

Civil and Environmental Engineering

CAHMDA/DAFOH Workshop

Sept 8-12, 2014

Austin, TX



• A general lack of information and skillful 
modeling frameworks leads to forecast products 
that do not have sufficient ability to be relied 
upon on an entirely deterministic manner.

• Uncertainty is pervasive throughout hydrologic 
forecasting.



Difficulties in Hydrologic Predictions

 Space-time variability of climatic inputs

 Heterogeneity of the land surface condition:

vegetation, land use, soils, snow extent, etc.

 Selection of one or multiple plausible model/s 

that can provide reliable and skillful prediction 

under all circumstances



Parameter Estimation: Improve estimates of a set of poorly known model 

parameters leading to a model solution that is close to the measurements. 

 All errors in the model are associated with uncertainties in the 

selected model parameters.

 The model initial conditions, boundary conditions, and the model 

structure are all exactly known

State Estimation using Data Assimilation: Defined as finding the estimate 

of the model state that in some weighted measure best fits the observation, 

the initial and boundary conditions.

Combined Parameter and State Estimation: An improved state estimate 

and a set of improved model parameters are searched for simultaneously.

Global Optimization or Ensemble Inference / Data Assimilation?



Limitations of Most Calibration Techniques

 In the case of insufficient availability of historical

data (e.g. ungauged or recently gauged basins)

batch calibration cannot be properly applied

 Incapability in investigating the possible temporal

variations of model parameters

 Non-uniqueness of solution (Ill-posed inverse problem)

 Mostly provide just a single solution ignoring the

uncertainty sources



Some Benefits of Data Assimilation

 Provides a framework for quantifying uncertainty 

 Can be used to calibrate models (dual state-

parameter estimation framework) 

 Can be used to estimate the uncertainty in system 

states for initializing the forecasts

 Can be used to reduce model uncertainty



Quantifying Uncertainties in Operational Settings

• Problem: Current operational streamflow forecasting 

system does not yet account for all sources of uncertainty

• Goal: Move towards a more complete accounting of all 

sources of uncertainty in forecasting system

– Meteorological Forcing

– Model states/parameters (e.g., Moradkhani et al., 2005; AWR; 2012, 

WRR)

– Initial Land Surface Condition (DeChant and Moradkhani, 2011, HESS; 

2014, JOH)

– Hydrologic model structure (Parrish et al., 2012, WRR)



Bayesian Inference

The Prior Probability describes what you first knew.

Multiply this by a term that describes the effect of your new 

information, and the result is what you know after you have taken 

into account your new information.
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• Utilize land surface observations to reduce the uncertainty in our 

probabilistic state estimates through sequential Bayes theorem

Ensemble Data Assimilation
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Implementation of Sequential Data Assimilation
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Calibration  Replicate Method for DA
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EnKF vs. PF 
DeChant and Moradkhani (2012), WRR



• Makes the assumption that 

errors are Gaussian and 

states/parameters are linearly 

correlated with prediction

– Allows for direct adjustment to 

states/parameters for 

characterizing the posterior 

distribution

– Not susceptible to sample 

impoverishment

• Hydrologic modeling 

problems are typically non-

Gaussian

– Leads to overconfident 

predictions

EnKF vs. PF 

 Most general solution 

available for data assimilation

 Theoretically more accurate in 

the non-Gaussian problems

 Requires extra attention to 

avoid sample impoverishment

 Effective adjustment to 

parameters is a difficult task

 Results are less overconfident 

than the EnKF

 Particle filter approaches 

optimal solution

EnKF PF



What’s  New?

• PF is more reliable than EnKF, but still overconfident

– PF approaches reliable distribution (EnKF does not)

– Parameter distribution tends to be overconfident

– Requires large ensemble size to avoid overconfidence

• Need larger parameter moves

– This is difficult to achieve without moving parameters outside posterior

• Two solutions

– Automatic tuning of parameter perturbation value

• Variable Variance Multipliers [Leisenring and Moradkhani, 2012; JOH]

– Ensure parameters remain within posterior 

• Markov Chain Monte Carlo step can reject poor parameter moves 

[Moradkhani et al., 2012, WRR]
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Evolution of ensemble data assimilation for 

uncertainty quantification using the particle filter-

Markov chain Monte Carlo method

WATER RESOURCES RESEARCH, 2012 
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Extra Considerations

 Must create effective proposal distribution

 𝜃
𝑝

𝑖,𝑡
= 𝜃+

𝑖,𝑡−1
+ 𝜀𝑖,𝑡−1 𝜀𝑖,𝑡−1~𝑁 0, 𝑠𝑉𝑎𝑟 𝜃−

𝑖,𝑡−1

 Tune jump rate “s” with VVM methodology to ensure wide enough 

proposal distribution

 Proposal parameter probability is not readily available

 Requires assumption about filtering posterior to include all prior 

information 𝑃 𝜃𝑖,𝑡|𝑦1:𝑡−1

 Here Gaussian assumption for simplicity

 𝜇𝑡 =  𝑖=1
𝑁 𝑤+𝑖,𝑡−1 𝜃

−
𝑖,𝑡−1

 𝜎2𝑡 =  𝑖=1
𝑁 𝑤+𝑖,𝑡−1 𝜃

−
𝑖,𝑡−1 − 𝜇𝑡

2

 Posterior is proportional to product of likelihood and prior

 𝑃 𝜃𝑖,𝑡|𝑦1:𝑡 ∝ 𝐿 𝑦′𝑡 − 𝑦𝑡|𝑅𝑘 ∗ 𝑁 𝜃𝑖,𝑡 , 𝜇𝑡 , 𝜎
2
𝑡



Experiment

• Perform state-parameter estimation with PF-SIR, and 

PF-MCMC with VVM 

– Use time-lagged replicates [DeChant and Moradkhani, 

2012] to increase the  number of calibration runs

– Perform experiments in both a calibration and validation 

phase

• Calibration tests streamflow prediction during 

parameter estimation

• Validation uses stochastic parameter estimates from 

calibration

• Perform experiments with HyMod model

– Data from the leaf river basin

– Validate with one day ahead prediction of streamflow



Synthetic Experiment

PF-SIR PF-MCMC



Verification using QQ plot



Predictive QQ plots of the three filters for state-parameter estimation 



Performance Measures in Real Streamflow Data Assimilation
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1. Run hydrologic model up to the start of the forecast 
period to estimate basin initial conditions;

Typical Streamflow Forecasting Method…
Courtesy of  M. Clark



Historical Simulation

Q

SWE

SM

Historical Data Forecasts

Past Future

SNOW-17 / SAC SNOW-17 / SAC

1. Run hydrologic model up to the start of the forecast 
period to estimate basin initial conditions;

2. Run hydrologic model into the future, using an 
ensemble of local-scale weather and climate 
forecasts. 

Approach ignores uncertainty in initial conditions as well as 

uncertainty in the land model used to produce the forecast

Typical Streamflow Forecasting Method…
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Study Area-Upper Colorado River Basin



Seasonal Cumulative Streamflow Prediction



More complete Characterization of Uncertainty by Data 
Assimilation and Multimodeling

Parrish, M., H. Moradkhani, and C.M. DeChant (2012), Towards Reduction of 

Model Uncertainty: Integration of  Bayesian Model Averaging and Data 

Assimilation, Water Resources Research, 48, W03519, 

doi:10.1029/2011WR011116.

DeChant C.M., and H. Moradkhani (2014), Toward a Reliable Prediction of 

Seasonal Forecast Uncertainty: Addressing Model and Initial Condition 

Uncertainty with Ensemble Data Assimilation and Sequential Bayesian 

Combination, Journal of Hydrology, special issue on Ensemble Forecasting and 

data assimilation, DOI: 10.1016/j.jhydrol.2014.05.045.



Hydrologic Models of Different Complexities… 
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Sequential Bayesian Combination

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Posterior
Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Prior
Time

F
lo

w
F

lo
w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior Posterior

Bayesian Model Averaging

Weighted Average

Time

F
lo

w

Time

F
lo

w

Time

F
lo

w

M
o

d
e

l 
1

M
o

d
e

l 
2

M
o

d
e

l 
3

Prior

Bayesian Model Averaging

Weighted Average



Ensemble Streamflow Prediction

Noisy Forcing + 

Observation

Spin-Up/

Data Assimilation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive 

Uncertainty

Predictive 

Uncertainty

Forecast Start Forecast End

T
ra

d
it

io
n

a
l 

E
S

P
E

S
P

 w
it

h
 D

a
ta

 

A
ss

im
il

a
ti

o
n

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing + 

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive 

Uncertainty

Predictive 

Uncertainty

Forecast Start Forecast End

T
ra

d
it

io
n

a
l 

E
S

P
E

S
P

 w
it

h
 D

a
ta

 

A
ss

im
il

a
ti

o
n

Spin-Up Start

Bayesian Model Averaging

Ensemble Streamflow Prediction

Noisy Forcing + 

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive 

Uncertainty

Predictive 

Uncertainty

Forecast Start Forecast End

T
ra

d
it

io
n

a
l 

E
S

P
E

S
P

 w
it

h
 D

a
ta

 

A
ss

im
il

a
ti

o
n

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing + 

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive 

Uncertainty

Predictive 

Uncertainty

Forecast Start Forecast End

T
ra

d
it

io
n

a
l 

E
S

P
E

S
P

 w
it

h
 D

a
ta

 

A
ss

im
il

a
ti

o
n

Spin-Up Start

Ensemble Streamflow Prediction

Noisy Forcing + 

Observation

Resampled Historical Forcing

Resampled Historical Forcing

Observed Forcing

Predictive 

Uncertainty

Predictive 

Uncertainty

Forecast Start Forecast End

T
ra

d
it

io
n

a
l 

E
S

P
E

S
P

 w
it

h
 D

a
ta

 

A
ss

im
il

a
ti

o
n

Spin-Up Start

Bayesian Model Averaging

Combining PF-SBC with ESP
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Modeling Cases

 Two Models

1) Variable Infiltration Capacity (VIC)

 Physically-based distributed model

2) National Weather Service (NWS) models

 Conceptual semi-distributed models

 Three cases for forecast spin-up

1) Open Loop (no assimilation)

2) Passive Microwave Brightness Temperature (TB)

3) Land Surface Temperature (LST) with TB



Combination of DA, Multi-modeling and ESP



Study Area



Water Supply Forecasting Experiment

 Generate multiple seasonal (3-month) volumetric streamflow

forecasts for the Upper Colorado River Basin

 Start dates on the 1st and 15th of  January through June

 Years of  study from 2003 through 2008

 72 total streamflow forecasts for each location

 Does the DA reduce the overconfidence related to ignoring initial 

condition uncertainty?

 Can Sequential Bayesian Combination improve the accounting of  

model uncertainty?



Sequential Bayesian Combination Weights



Exceedance Ratios



Spatially Distributed 99% Exceedance Ratio



Reliability



Water Supply Forecasting Conclusions

 ESP produces overconfident seasonal 

streamflow forecasts
– Incomplete accounting of all uncertainty sources

 Data assimilation generally improves reliability, 

but remains overconfident
– Model uncertainty not effectively managed

 DA-SBC leads to a most reliable forecasts
– Model itself is a major source of uncertainty!


