Improving Streamflow Prediction
in Show-fed River Basins via
Satellite Snow Assimilation

Yugiong Liu

NASA GSFC & University of Maryland, College Park




Importance of Snow

1/6 of world’s population

depends on snowmelt runoff Runoff dominated by snowmelt

for water supply

Snow is a critical element of
the hydrologic cycle

Snow is a sensitive indicator of
climate change

Barnett et al., Nature, 2005

Snow is an important initial
condition for seasonal flow
forecasting
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Snow and Drought
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3 All things green, from conservation to Capitol Hill

CLIMATE SCIENCE

Why Dwindling Snow — Thanks Largely to
Climate Change — Might Dry Out Los Angeles

Southern California depends on the mountain snowpack for part of its water — and that snow
is about to get less reliable

y Bryan Walsh ine 17,2013 ' 66 Comments
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While the national government remains slow to deal
with climate change, many cities have been moving
ahead. Why the difference? Well, cities tend to be
more homogenous politically, which makes any kind
of decisive action easier to push through. But the real
reason is that city managers know they will be the
first ones forced to deal with the likely consequences
of global warming; rising sea levels and flooding,
deadly heat waves and water struggles. New York
City didn’t ju
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Study Shows 'Megadrought' May
Soon Hit Southwestern U.S.

Arizona and California are in the 15th year of the worst drought on record. But the
next one could reach as far as Texas and last 35 years
By Rafi Letzter Posted 09.05.2014 at 11:00 am
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Colorado River Basin Drought

Lake Mead

Since 2004, the snowmelt-
driven Colorado River Basin
(which feeds California and
six other states) lost nearly
53 million acre feet of
freshwater. That's enough
to submerge New York City
beneath 344 feet of water.




Snow and Flooding

Feb 1996 ROS Flooding in Oregon

In snow-dominated basins,
heavy rainfall accompanied
by rapid snowmelt (rain on A
snow — ROS) can cause ﬂ':—
severe/dangerous flooding in
winter or spring!




Existing snow information

< Remote sensing products

« MODIS, Landsat, VIIRS, SMMR, SSMI, AMSR-E, AMSR-2, AVHRR, GRACE, GPS,
Airborne snow observatory

<~ Operational analysis products o !E'

: 4 wt .l.‘.
e IMS, CMC, SNODAS, GlobSnow '!.- v -

<Model-based reanalyses
e ERA interim, MERRA-Land, GLDAS, NLDAS

<>Reconstruction products
e Liston and Hiemstra, 2011; Girotto et al., 2014

< In-situ data
e SNOTEL, COOPS, GHCN, snow course,
field campaigns (CLPX, C3VP, GCPEX)
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Snowmelt-driven flow forecasting: Challenges &
Opportunities

Challenges

— Large spatiotemporal variability, sparse in-situ snow observation network
— Remote sensing measurements subject to large bias and data gaps

— Large uncertainty snow models and reference snow datasets

— Improvement in snow does not always translate into improvement in flow
forecasting

Opportunities

= Scale satellite products to model climatology and only assimilate anomalies
= Conduct radiance-based assimilation

= Adjust satellite products against in-situ observations to reduce bias prior to
assimilation

= Assimilate integrated multi-sensor products (e.g., PMW + VIS)
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Using satellite data for hydrologic
prediction via data assimilation

Point, local-scale
Non-representative of spatial variability
Relatively reliable

Fine or coarse resolutions
Space-time continuity
Large uncertainty

Large scale
Spatially continuous
Coarse resolutions
Large uncertainty

Advancing data assimilation in
operational hydrologic forecasting:
progresses, challenges, and emerging

opportunities HESS 2012

Y. Liu“z, A.H. Weertss, M. Clark“, H.-J. Hendricks Franssen5, S. Kumars'z,

H. Moradkhani’, D.-J. Seo®, D. Schwanenberg?®, P. Smith®, A. 1. J. M. van Dijk'°,
N.van Velzen'", M. He'?'3, H. Lee'®'*, s. J. Noh'®, 0. Rakovec'®, and

P. Restrepo
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Bias Correction Algorithm — Optimal Interpolation

bpatia

correlation
odulatee

by

topog

Weight Calculation (Brasnett 1999)

W =(P+0O)'q

P: correlation of background error at obs. locations
qg: correlation of background error between grid cell & observation
O: obs. error variance normalized by background error variance

Calculationof Pand q: M = a(l”,;/)B(AZ,;/)

a(r;) = (1 + cr;) exp(—cr) B(Az,) = exp _(AZI:/)
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NASA Land Information System (LIS)
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Case Study 1 - Alaska

e Elevation: 0-6000 m

e Complex mountainous areas,
discontinuous permafrost,
seasonally frozen soils, extensive
glaciation, distinctive climate
zones

e Huge spatial variability in snow
distribution, diverse snow classes

e 1-km spatial resolution

(700*1200)

e Analysis period: 2002-2011 il
USGS Gage
49M08S

e Assimilate MODIS snow cover and Bt

59

AMSR-E snow depth
* 27 SNOTELSs, 9o COOPs

Liu et al., Advances in Water Resources, 2013
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Evaluation Against CMC Daily SD -

Difference in RMSE (DA = OL)
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Evaluation Against USGS Streamflow

Mean Monthly Discharge (CFS)
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Improving Bias Correction of PMW Snow

e Incorporating terrain aspect information
e Tuning algorithm parameters
e Using station data strategically

* Integrating MODIS snow cover for
additional quality control

* Enabling spatial variability in PMW errors
based on land cover




Case Study 2 — Upper Colorado River Basin

Elevation distribution of stations
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Experimental Setup

Multiple DA runs
assimilating different
bias-corrected PMW

snow depth datasets
5-km, 2002-2011

15 large sub-basins in
the Upper Colorado
Basin, ranging from
254 to 111800 square
miles

Monthly natural
streamflow data from
BOR
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March Snow Depth RMSE (DA - OL)
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POD & FAR Against MODIS (DA -0L)
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Evaluation Against Monthly Natural Flows (1)

Mean monthly flow (cms)

Basin 15 OBS (dot)

Mirui




Evaluation Against Monthly Natural Flows (2)

NIC,,s; =(RMSE,, - RMSE,,)/ RMSE,,

Normalized Information
Contribution (NIC) Measures NIC,,, =(MAE, - MAE,,)! MAE,

NIC,, =(NSE,, -NSE,,)/ (1- NSE,,)

NIC Measures of DA

B NC AMSE [ INIC_ NSE I NIC_ MAE
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Case Study 3 - CONUS

12.5km (NLDAS2 domain)
1980-2011 (31 years)

PMW snow products
— SMMR (1980-1987)
— SSMI (12987-2002)

-110 -100

— AMSR-E (2002-2011) 9106 GHCN stations

669 SNOTEL stations
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Streamflow Data for Evaluation

USGS streamflow for 947 small Natural flow river basins
NLDAS basins (Xia et al. 2012) (Mahanama et al., 2012)

: vh Ry

USGS Water Resources Regions
(MA, SGA, GL, OH, TN, UM, LM, SRR, MI,
AWR, UCO, LCO, GB, PNW,CA)

CAHMDA-DAFOH 2014
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Evaluation Against Daily USGS Streamflow for
947 NLDAS Basins (1)

NIC_RMSE = (RMSE(DA) - RMSE(OL))/ RMSE(OL)
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Evaluation Against Daily USGS Streamflow for
947 NLDAS Basins (2)

Bias (Mean Error, CMS) Bias normalized by mean daily flow
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Evaluation Against Monthly Natural Flow Data

OBS(dot) OL DA_PMW_GHCN DA_PMW_SNOTEL
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Concluding Remarks

Successful data assimilation requires good model and good

data

Blending satellite snow data with in-situ observations shows

potential for streamflow forecasting in snow-driven basins

Greater success with large basins but still considerable room

for improvement with small basins

Snowmelt-driven streamflow prediction session AGU 2014
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“Yesterday is history. Tomorrow is
mystery. Today is a gift. That's why it
is called the present.”

= Master Wugui, Kongfu Panda

Models &

history

Data | Data Better




