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Difficult to measure

» ground-based observations can differ by >100%

Snowflakes not all alike (non-spherical, dendritic)

Importance

NEXRAD radar = beam blocking in mountainous regions

Satellite-based = issues with pixel-scale variability

Forward model results contain significant error / uncertainty
» Motivates hydrologic modeling with snow assimilation

Rasmussen et al., 2012, BAMS
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Importance

AMSR-E SWE Retrieval on March 1,

AMSR-E SWE Retrieval

Canadian Meteorological Centre
Daily Snow Analysis = “truth”

NASA Catchment model with
NASA MERRA forcing
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Importance

SWE near peak accumulation on 01-Mar-2009 (n=442)

1.2}

Estimated SWE (m)
o o o
= =5 o -

o
[S)

Snow Models are Good ... But Not Great

NASA Catchment Model .
® AMSR-E SWE Retrieval g

0.2 0.4 0.6 0.8 1 1.2
Observed SWE via SNOTEL (m)
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> Vital resource for ~billion people worldwide
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Snow is a significant contributor to terrestrial freshwater supply

>

Vital resource for ~nbillion people worldwide

Not exactly sure how much snow is out there

>

Significant uncertainty

Global warming = rising snow line = reduced virtual reservoir

Existing satellite-based snow retrievals have limitations

>

>

MODIS Visible = primarily measures snow extent

AMSR-E Microwave = deep snow, wet snow, ice layers, forest
attenuation, etc.

GRACE Gravimetry = large spatial resolution, post-glacial
rebound



Research Motivation

Snow is a significant contributor to terrestrial freshwater supply
> Vital resource for ~billion people worldwide

Not exactly sure how much snow is out there
» Significant uncertainty

Motivation

Global warming = rising snow line = reduced virtual reservoir
o Existing satellite-based snow retrievals have limitations

» MODIS Visible = primarily measures snow extent

» AMSR-E Microwave = deep snow, wet snow, ice layers, forest
attenuation, etc.

» GRACE Gravimetry = large spatial resolution, post-glacial
rebound

Need for computationally efficient measurement model operator



Research Motivation

Snow is a significant contributor to terrestrial freshwater supply
> Vital resource for ~billion people worldwide

Not exactly sure how much snow is out there
» Significant uncertainty

Motivation

Global warming = rising snow line = reduced virtual reservoir

o Existing satellite-based snow retrievals have limitations

» MODIS Visible = primarily measures snow extent

» AMSR-E Microwave = deep snow, wet snow, ice layers, forest
attenuation, etc.

» GRACE Gravimetry = large spatial resolution, post-glacial
rebound

Need for computationally efficient measurement model operator

Goal is to improve SWE at regional and continental scales
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Mothation “Water. It's about water.”

— Wallace Stegner

(response when asked by a journalist
“What is California about?")



California Drought and the Role of Snow

Motivation
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Lake storage and river runoff = majority fed by snow melt



Interannual Snow Variability

Motivation

f January 13, 2013

MODIS "true color” image showing snow covered area
(Figure courtesy of NASA)
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Brown, 2000, Journal of Climate
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—NH. Snow Cover Extent
= = - Linear Regression
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Motivation
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Year

o

Analysis based on Rutgers Weekly Snow Cover Extent Product



Motivation

http://nationalatlas.gov/articles/climate/a_snow.html
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Motivation

Declining Snow Mass via Satellite Retrieval?

Trend 1982-2009
o

Total snow mass (Gt)

2500 )

0 1985 1990 1995 2000 2005
year

Takala et al., 2011, Rem. Sens. Environ.

2010

NOTE: Snow mass
estimates exclude
mountainous terrain
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Existing Snow

DA Studies

Snow Cover Extent Assimilation

Andreadis and Lettenmaier, 2006, Adv. in Water Resour.

SNOTEL  Open Loop

fz 1 T
|
7 ||
| "-A ‘ '
l |
e i!s 1
Oet Apr Qet Apr
2001 2002

Added value via assimilation limited to ablation (melt) season




PMW SWE Retrieval Assimilation

De Lannoy et al., 2012, Water Resour. Res.
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EnsOL SWE DA SCF DA SWE&SCF DA
Experiment

Conditioned estimate degraded via SWE retrieval assimilation
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PMW 71, Assimilation
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Conducted using snow pit (~1 meter scale) observations
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Forman et al., 2012, Water Resour. Res.
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Improvement in SWE estimate (and runoff), but limited
by large spatial resolution and post-glacial rebound
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Su et al., 2010, J. Geophys. Res.
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Multisensor (visible4-gravimetric) framework improved SWE estimates
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Open Loop
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(baseline)
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Open Loop SVM-derived Th predictions

(baseline) PMW Th assimilation via
SVM to improve SWE

DA Framework
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w
DA Framework lm| mT“
+ + .
Open Loop SVM-derived Th predictions TWS predictions
(baseline). PMW Tb assimilation via .
SVM to improve SWE TWS assimilation to

improve SWE and TWS



Multisensor Assimilation Framework

Experiment #2 Experiment #3 Experiment #4

Experiment #1

DA Framework

+ + +
Open Loop SVM-derived Tb predictions TWS predictions SVM-derived Th predictions
ine) PMWTbasslrfﬂalim i TWS predictions
SVM to improve SWE

TWS assimilation to dual PMWTb and TWS assimil-
improve SWE and TWS ation to improve SWE and TWS‘
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Experiment #2 Experiment #3

Experiment #4

Experiment #1

DA Framework

+ + +
Open Loop SVM-derived Th predictions TWS predictions SVM-derived Tb predictions
Ao BB, dict
(baseline) PIWTH aséirilation via TWS predictions

SVM to improve SWE TWS assimilation to
3 dual PMWTh and TWS assimil:
improve SWEandTWS ™ ation to improve SWE and TWS

explore and quantify synergistic impacts to modeled hydrologic response via
combined machine learning and multisensor. asdtr:rydwqgrg SPO mework
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Vision for PMW 7, Assimilation

Advanced Microwave Scanning
Radiometer 2 [AMSR2)
———

S5M;

DA Framework

Special Sensor Microwave Imager (SSM/)

L 1 1 L -
1087 2002 2011 2012 Present
Timeline (not to scale)
+ . — —
Y = vy, + K [ Z71, — h(yi )]

Kal i
posterior SWE  prior SWE alman gain pMW T,  machine learning
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Snow Emission Model vs. Machine Learning

SWE

SnowTemp.  ——3=
Snow Density  ——3m
DA Framework Liguid Water — —Jm
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Global land surface models lack the fidelity required by snow emission model



Best Summed Up by Anonymous Reviewer

““[At the continental scale,] the
strategy of using machine learning

to perform forward 7;, estimation
is a good choice short of the

computationally-frightening idea of
using a physically-based forward

T, model.’’

— Anonymous Reviewer



Advanced Microwave
Scanning Radiometer EOS
(AMSR-E)

Onboard the Aqua satellite

Measures passive microwave
radiation

Dual-polarized measurements
at multiple frequencies
Twice daily estimates (utilize
nighttime only)

Utilize ~25 km EASE grid
product

Data record from 1 Sep 2002 http://aqua.nasa.gov//reference/publications.php
to 1 Sep 2011 (9 years)
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Domain
e North America (north of
32°)
® 1 Sept. 2002 — 1 Sept. 2011
Model

® GEOS-5 Catchment model
® MERRA forcing
SVM Training Targets

® AMSR-E nighttime overpass

Snow classification map [Sturm et al., > 10.65, 18.7, and 36.5 GHz
1995]. > V- and H-polarization

Domain

Validation Approach

® AMSR-E “Jackknife approach”
(i.e., data not used during
training)
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Machine
Learning

ANN Schematic

Input
e DI PR PR P

Hidden 5, 275 ™ 4™
Layer I\H '/' :\H;Ir [\H |

Weighis

Output
Layer

SVM Schematic

Input L O L]

i

Vectors

Produsts

Cutput
Vector

Machine Learning Background

ANN Architecture (Forman et al., 2013)

® Single-layer, feed-forward perceptron
® |evenberg-Marquardt optimization

SVM Architecture (Forman and Reichle, 2014)
® Radial basis function using split-sample

training/validation
® LibSVM library courtesy of NTU

ANN / SVM Inputs

® Snow water equivalent; snow liquid water
content; temperature gradient index (proxy for
snow grain size); snow temperature and density
at multiple depths; near-surface soil, vegetative
canopy, and near-surface air temperatures

® Catchment snow coincident with NOAA IMS
Snow Cover product

ANN / SVM Outputs
e Tj at 10H, 10V, 18H, 18V, 36H, and 36V
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18.7 GHz, V-pol 36.5 GHz, V-pol

AMSR-E
Comparison
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Comparison

Comparisons for All Frequencies/Polarizations
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T, predictions effectively unbiased at all frequencies/polarizations
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Time Series

AMSR-E Comparison (2003-2004 Season)

Relatively shallow snow
(max. SWE = 0.07 cm)
and limited forest cover
(forest fraction = 0.01)

Relatively deep snow
(max. SWE =0.22 cm)
and thick forest cover
(forest fraction = 0.42)

AMSR-E 18V —— ANN 18V —— SVM 18V
AMSR-E 36V —— ANN 386V —— SVM 36V

]

Sep03 Dec03 Mar04 Jun04
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spatial standard deviation
for each day, then averaged
over 9-years

® Snow classification derived
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from Sturm et al., 1995
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Sensitivity Analysis of AMSR-E 7}, Predictions
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Increasing SWE — decreasing T, — adheres to first-order physics
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via SVM via ANN

10 5 o 5 10
Gain [mm K-t
* Y?_ =y, + K [ Zr, — h(y;) J
~—~ ~—~ -~ ~—~ ——
posterior prior Kalman gain - AMSR-E  via machine learning

e Computed gain on 6 February 2003 between modeled SWE and
SVM-derived AT,=18V-36V

Gain Matrix
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10 5 o 5 10
Gain [mm K-t
* Y?_ =y, + K [ Zr, — h(y;) J
~—~ ~—~ -~ ~—~ ——
posterior prior Kalman gain - AMSR-E  via machine learning

e Computed gain on 6 February 2003 between modeled SWE and
SVM-derived AT,=18V-36V

e For K~ 10,if Z" - ZP ~1 K=y —y; ~1cm

Gain Matrix
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via SVM via ANN

10 5 o 5 10
Gain [mm K-t
* Y?_ =y, + K [ Zr, — h(y;) J
~—~ ~—~ -~ ~—~ ——
posterior prior Kalman gain - AMSR-E  via machine learning

e Computed gain on 6 February 2003 between modeled SWE and
SVM-derived AT,=18V-36V

e For K~ 10,if Z" - ZP ~1 K=y —y; ~1cm

e Non-zero error covariance structure exists!

Gain Matrix
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Remaining lIssues

Potential Sources of Error

Sub-grid scale lakes?

Sub-grid scale sea ice (coastal regions only)?
Vegetation effects?

Soil moisture effects?

Depth hoar evolution?

Internal ice layer(s) and/or ice crust(s)?
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LSM predictions possess skill due to improved forcings

SVM predictions are relatively unbiased at all frequencies/H or V
e Domain-averaged RMSE < 8 K at all frequencies/H or V

Significant skill at predicting inter-annual variability

Predictive capability during accumulation (dry snow) and
ablation (wet snow) phases

Conclusions
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e LSM predictions possess skill due to improved forcings

e SVM predictions are relatively unbiased at all frequencies/H or V
e Domain-averaged RMSE < 8 K at all frequencies/H or V
o Significant skill at predicting inter-annual variability

o Predictive capability during accumulation (dry snow) and
ablation (wet snow) phases

e Issues with ice layer(s) and sub-grid scale lake ice

e Computationally efficient

e Bridge spatial / temporal scales between PWM T, and GRACE
o Effectively add vertical resolution to GRACE TWS

e Multiple frequencies/polarizations allow for flexibility in DA
framework

Conclusions > Transferable methodology to SSM/I and AMSR2



Thank You.

Questions and/or Comments?

Partial financial support provided by the
NASA New Investigator Program (NNX14AI49G)
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