THE UNIVERSITY OF TEXAS AT AUSTIN

Advancing Flood Detection and Preparedness through GEOSS Water Services

David K. Arctur

University of Texas at Austin Open Geospatial Consortium (OGC)

CAHMDA/DAFOH Joint Workshop

University of Texas at Austin, 8-September-2014

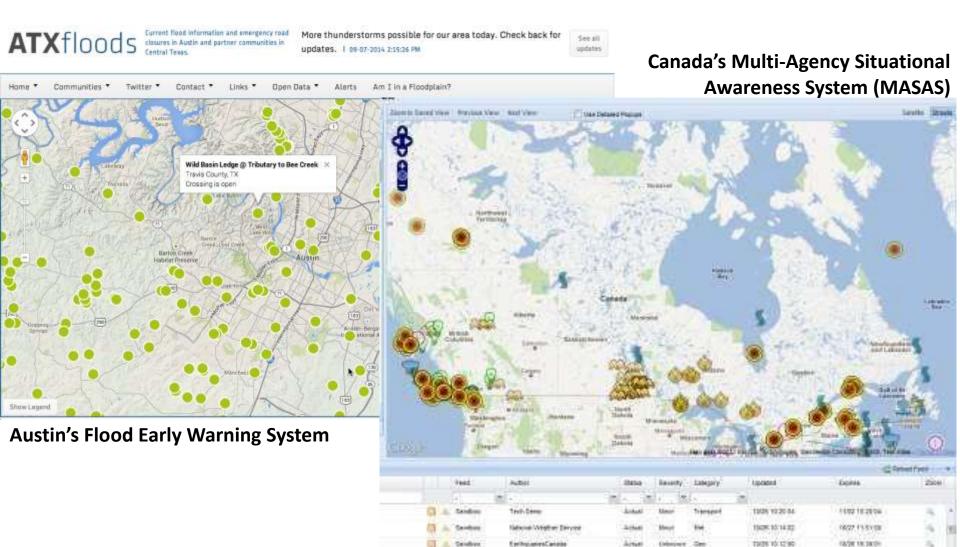
Acknowledgements: David Maidment, Simon Cox, Stefano Nativi, Peter Salamon, Albert Kettner, Cedric David, Fernando Salas, Gonzalo Espinoza

Research & development sponsored by NASA, NSF, Esri, Kisters AG, Microsoft Research

Context

Multiple agencies are developing models & approaches that can be used in detection and prediction of flooding

- NASA GRACE
- NASA GLDAS/NLDAS
- NWS Precipitation
- USGS National Water Information System
- ECMWF/JRC Global Flood Awareness System
- Numerous local, regional & national flood early warning systems


Essential model results and observational data need to be shared with key emergency response staff as quickly & clearly as possible

10/04/10 80/25

10/04/03 24:08

For timely, accurate situational awareness...

Desident

Endersoneri Caricalia

More context

- An essential aspect of sharing this kind of information is that it needs to work consistently across institutional and political boundaries
 - Local, state, national, continental, global, and fields of science
- This does not make the development of tools easier, but complicates it: more & different stakeholders need to come to the table, share ideas & agree on decisions
- Regardless, we really have to do it... so we start somewhere:
 - by making basic water data (streamflow, stage, soil moisture, precipitation, runoff) consistently available in as many countries as we can reach

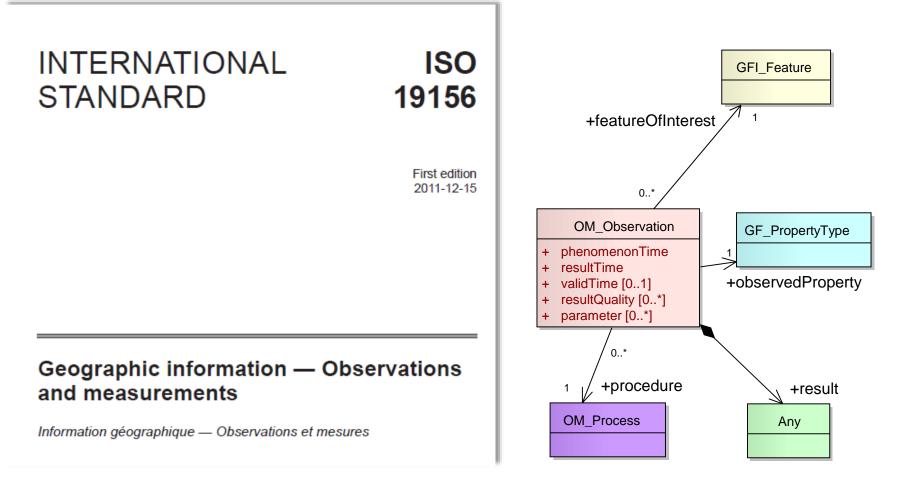
How do we do that?

We bridge socially across:

- communities of data providers
- communities of domain scientists
- communities of emergency response professionals & policy makers

And technologically across:

- disparate, agency-dependent data collection regimes
- different data formats, data quality, spatial & temporal resolution, IT architectures


This type of work cannot be done simply, quickly, or unilaterally... but it is happening!

One key development group...

• OGC/WMO Hydro DWG started in 2008

- Conducted 2 interoperability experiments, leading to...
- Water Markup Language (WaterML Part 1), adopted as international standard in 2012 for exchange of water data time series
- Now working on exchange of rating curves, gagings and cross-sections (WaterML Part 2, 95% complete)
- And water quality (WaterML Part 3, just starting)
 - One variable per time series
- WaterML is a based on the OGC Observations & Measurement (O&M) Standard, also an ISO standard...

An Observation is an action whose result is an estimate of the value of some property of the feature-of-interest, obtained using a specified procedure

Cox, OGC Abstract Specification – Topic 20: Observations and Measurements 2.0 ISO 19156:2011 Geographic Information – Observations and measurements

9 | Cox, Simons, Yu | Observable property ontology

So where are we?

- We have a core information model for observations (OGC O&M)
- Extended & profiled to represent water data (WaterML)
 - A means of requesting & receiving it over the web (Sensor Observation Service, SOS)
- A means of mapping station point locations for easy discovery (Web Feature Service, WFS)
- A set of interfaces for cataloguing these data services (Catalog Service for the Web, CSW)

And these are all international standards

Gauge description and data links...

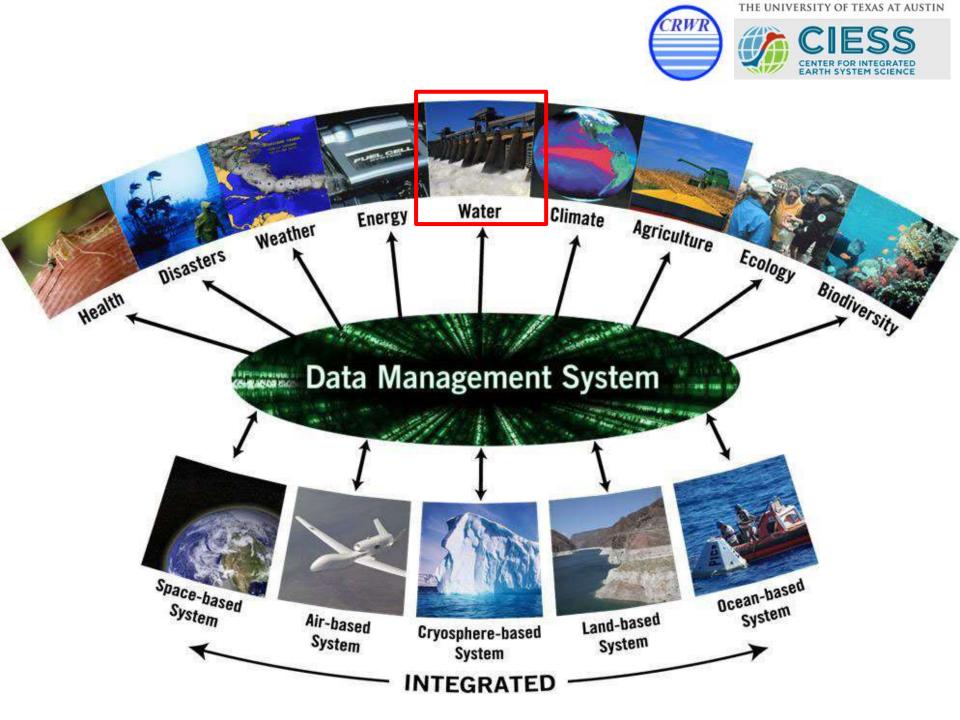
http://geoss.		ome/webmap/viewer.ht	tml?webmap=5efcdf027	0 1,250 0 1,000 0 750 500		MAR HEndelly		WHAT HAMAN
HADE	(1 of 742)	× 1	X .	250	W VV	N. M. K. M.	war way	NJ T TN
50 0 000	Global - GRDC: NEAR CONCRETE,			7		2003 2004 2 10-10-01 00:00:00 - 2009-01-12 ated 2014-03-13 20:54:25 GMT+01:0		2007
	Source	GRDC					A	
	Description	Daily average streamflow in cubic meters per second				#ts_id;2634042 #rows;365 #Timestamp;Value		
	SiteName	NEAR CONCRETE, WA			4	2008-01-13T09:00:00.0 2008-01-13T09:00:00.0	000+01:00;442.804	4625
	BeginDate	1924-10-01	200		6	2008-01-14T09:00:00.0		
	EndDate SampleGraph	2009-01-12 More info	Second Second		8 9	Eor eas		
	GraphURI	More info		8	10	2008-01-16T09:00:00.0	000+01:00;410.240	025
	WaterML	More info	28 (Do -	8	2 11			
	WaterMLURI	More info	20000	SCA SRO	12			
	WaterMLVersion	2.0		000000	14			
	Download	More info		8000	15			
	DownloadURI	More info		-	16			
		More milo			17			
	Zoom to				(18			
		A 2 26 2	i i i i i i i i i i i i i i i i i i i		19			
		C C C C C C C C C C C C C C C C C C C		0	20			
		88-2			21			
$\lambda \Lambda / a +$	or Al fo	full data	ilo		23			
WaterML for full details					24			
					25			

NEAR CONCRETE, WA- Q-10-DailyMean **For quick overview For quick overview Journal of the second secon**

- <wml2:Collection xsi:schemaLocation="http://www.opengis.net/waterml/2.0 http://www.opengis.net</p> /waterml/2.0/waterml2.xsd" gml:id="Ki.Col.1">
 - <gml:description>KISTERS KiWIS WaterML2.0</gml:description>
- <wml2:metadata>
 - <wml2:DocumentMetadata gWaterML 2.0 <wml2:generationDate>2014-03-13T20:00:12.973+00:00</wml2:generationDate>
 - <wml2:generationSystem>KISTERS KiWIS</wml2:generationSystem>
 - </wml2:DocumentMDocument metadata</pre>
- </wml2:metadata>
- <wml2:temporalExtent>
 - <gml:TimePeriod gml:id="Ki.TempExt.1"> <gml:beginPosition>2008-01-13T09:00:00.000+01:00</gml:beginPosition> <gml:endPosition>2009-01-11T09:00:00.000+01:00</gml:endPosition> </gml:TimePeriod>
 - </wml2:temporalExtent>
- <wml2:observation Observation description
 - <om:phenomenonTimePhenomena time
 - <gml:TimePeriod gml:id="Ki.ObrTime.1"> <gml:beginPositionPeriod gml:id="Ki.ObrTime.1"> <gml:beginPositionPeriod gml:id="Ki.ObrTime.1"> <gml:endPosition>PopOl 11Too 00:00 e00+01:00</gml:endPosition> </gml:TimePeriod>
 - </om:phenomenonTim@bserved property</pre> - <om:resultTime>
 - <gml:TimeInstant gn Feature of interest
 - <gml:timePosition: PO2.01 1TO9:00:00.000+01:00</gml:timePosition> </gml:TimeInstant>
 - Time series metadata </om:resultTime>
 - <om:procedure xlink:href="Day Cmd" xlink:title="10 DailyMean"/> <om:observedProperty xlink:href="MailyMean"/>
 - <om:featureOfInterest xlink:href="4145081" xlink:title="NEAR CONCRETE, WA"/>
 - <om:result>
 - <wml2:MeasurementTimeseries gml:id="Ki.Ts.2634042">
 - <wml2:defaultPointMetadata>
 - <wml2:DefaultTVPMeasurementMetadata>
 - <wml2:gualifier xlink:href="40" xlink:title="40"/>
 - <wml2:uom code="cumec"/>
 - <wml2:interpolationType xlink:href="http://www.opengis.net/def/waterml
 - /2.0/interpolationType/ConstPrec" xlink:title="Constant in preceding interval"/> </wml2:DefaultTVPMeasurementMetadata>
 - </wml2:defaultPointMetadata>

- <wml2:point>
 - <wml2:MeasurementTVP>
 - <wml2:time>2008-01-13T09:00:00.000+01:00</wml2:time> <wml2:value>442.804625</wml2:value>
 - </wml2:MeasurementTVP>
- </wml2:point>
- <wml2:point>
 - <wml2:MeasurementTVP>
 - <wml2:time>2008-01-14T09:00:00.000+01:00</wml2:time> <wml2:value>457.316875</wml2:value>
 - </wml2:MeasurementTVP>
- </wml2:point>
- <wml2:point>
 - <wml2:MeasurementTVP> <wml2:time>2008-01-15T09:00:00.000+01:00</wml2:time> <wml2:value>450.946</wml2:value>

Time series data, cont'd

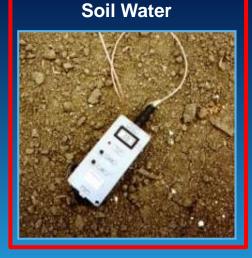

- <wml2:point>
 - <wml2:MeasurementTVP> <wml2:time>2008-01-16T09:00:00.000+01:00</wml2:time>
 - <wml2:value>410.24025</wml2:value>
 - </wml2:MeasurementTVP>
- </wml2:point>
- <wml2:point>
 - <wml2:MeasurementTVP>
 - <wml2:time>2008-01-17T09:00:00.000+01:00</wml2:time> <wml2:value>418.027375</wml2:value>
 - </wml2:MeasurementTVP>
- </wml2:point>
- <wml2:point>
 - <wml2:MeasurementTVP>
 - <wml2:time>2008-01-18T09:00:00.000+01:00</wml2:time> <wml2:value>368.47325</wml2:value>
 - </wml2:MeasurementTVP>
- </wml2:point>
- <wml2:point>
 - <wml2:MeasurementTVP>
 - <wml2:time>2008-01-19T09:00:00.000+01:00</wml2:time> <wml2:value>306.88375</wml2:value>
 - </wml2:MeasurementTVP>
 - </wml2:point>
- </wml2:MeasurementTimeseries> </om:result> </om:OM Observation> </wml2:observationMember> </wml2:Collection>

GEOSS: An approach to socializing the technology

GEOSS: Global Earth Observation System of Systems

- Hosted by GEO (Group on Earth Observations) to publish Earth observation datasets from 92 member countries
- GEO home page: <u>http://www.earthobservations.org/</u>
- GEOSS search portal: <u>http://www.geoportal.org/</u>
- Enables distributed search among dozens of catalogs, accessing millions of data services, following international data exchange standards (ISO, WMO, OGC, ...)
- Data is organized around 9 Societal Benefit Areas (SBAs): Water, Weather, Climate, Biodiversity, Ecosystems, Energy, Agriculture, Health, Disasters
- **GEOSS AIP (Architecture Implementation Pilot)**
 - Series of 1-year project cycles to implement GEOSS, started in 2007; AIP-6 complete in 2013; AIP-7 in progress.

GEOSS was started with millions of datasets from remote sensing... Now working to add water time series data



Water Quality

Meteorology

Groundwater

Time series data at point locations

GEOSS Water Services Team

(* new members)

Academic

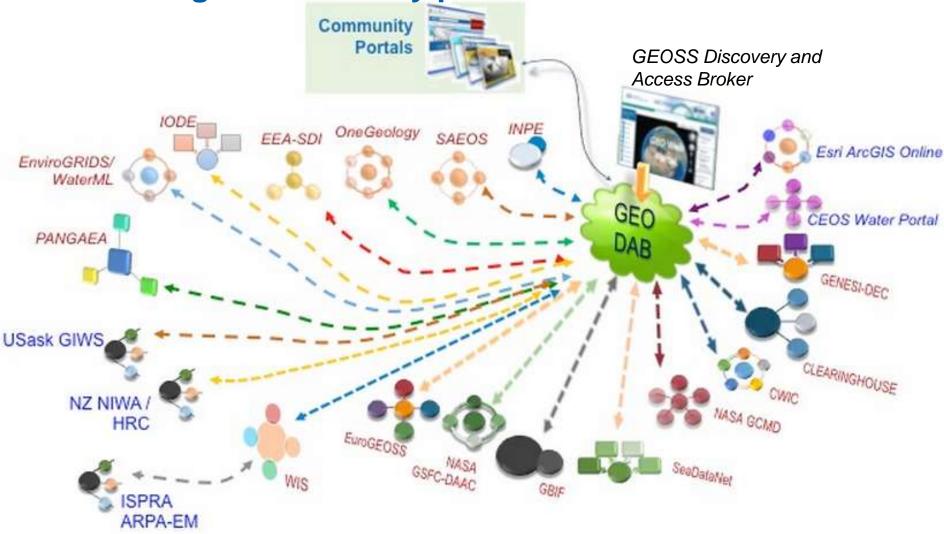
- University of Texas at Austin, USA
- Brigham Young University, USA
- University of Saskatchewan, Canada
- Feng Chia University, Taiwan *

Community Labs, Portals

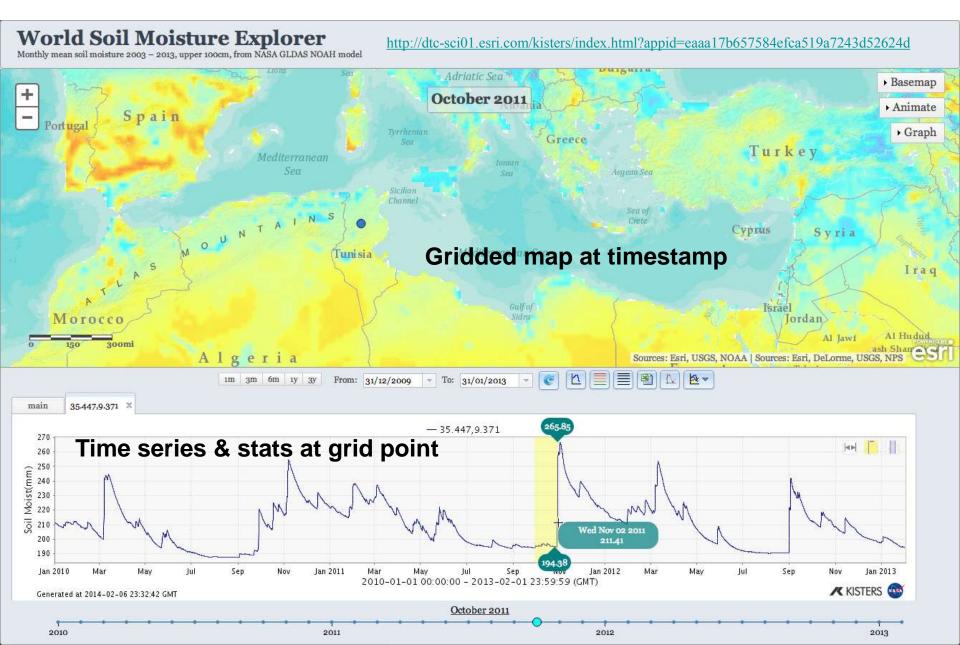
- CUAHSI Water Data Center, USA
- Dartmouth Flood Observatory, USA *
- NASA Goddard Hydrological Science Lab, USA
- NASA Goddard Earth Sciences DISC, USA
- Federal Institute of Hydrology, Germany * (supporting GRDC, GEMS/Water)
- EC Joint Research Centre (JRC), Italy
- European Centre for Midrange Weather Forecasting (ECMWF), UK
- Centre for Ecology and Hydrology, UK *
- CEOS Water Portal (JAXA), Japan

GEOSS Water Services Team, cont'd

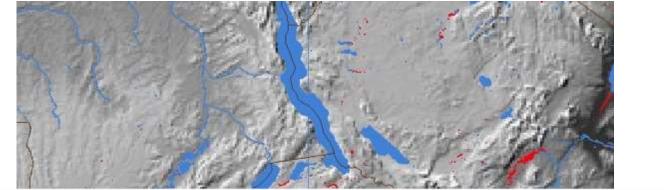
National and regional agencies

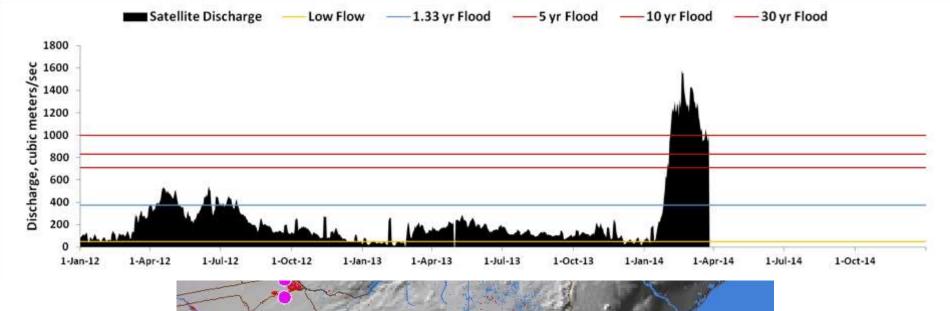

- Italian National Institute for Environmental Protection and Research (ISPRA)
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA-ER), Italy
- New Zealand National Institute of Water and Atmospheric Research (NIWA)
- Horizons Regional Council (HRC), New Zealand

Commercial Engineering & Software


- Esri, USA
- Kisters AG, Germany
- Microsoft Research, USA

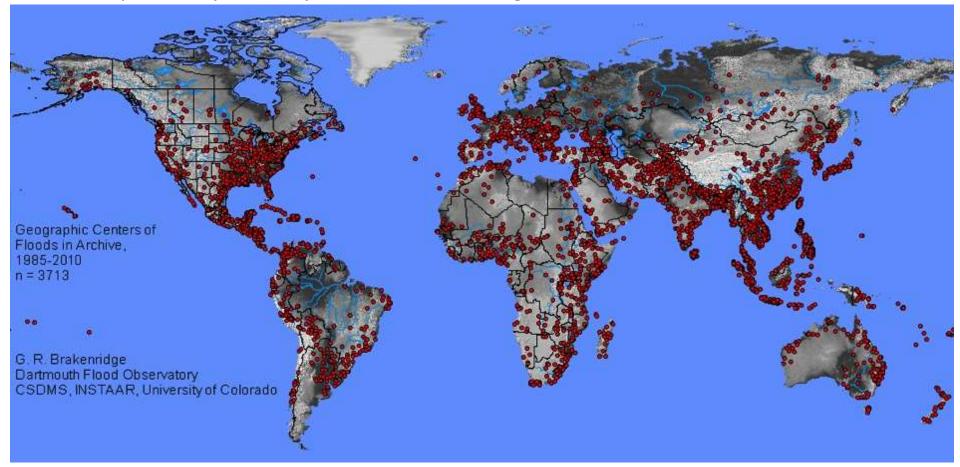
GEOSS Portal: connecting to community portals and other resources


Viewing & comparing time series values

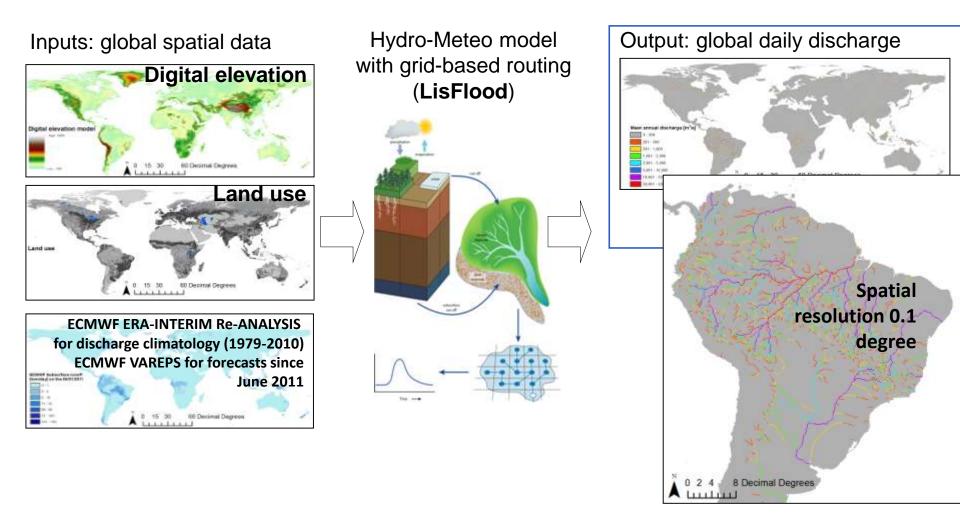


Flood Monitoring

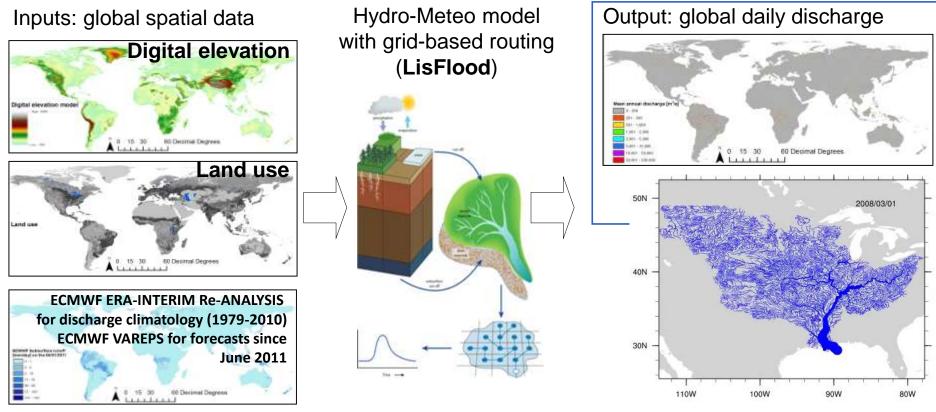
The Dartmouth Flood Observatory maps flood extents globally, based on pre- and post-event imagery from NASA MODIS



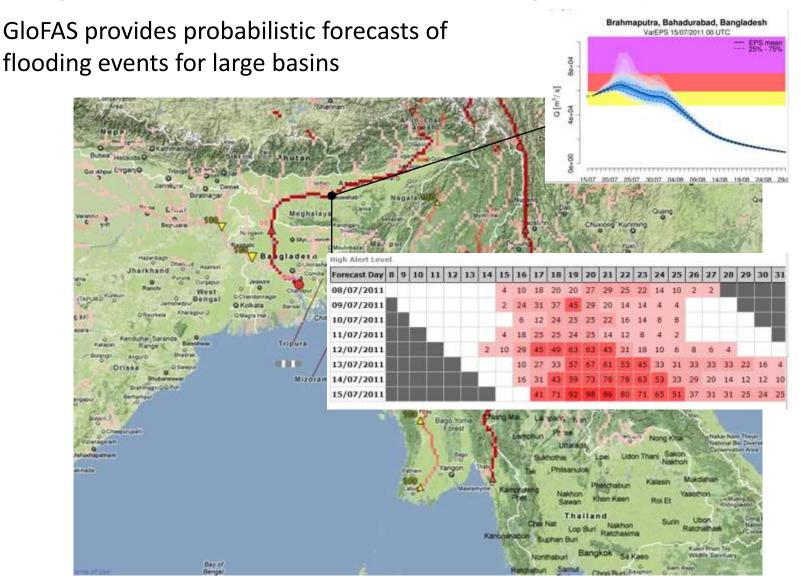
Flood Monitoring


The Dartmouth Flood Observatory preserves the record of each major flood event, for posterity and for use in global flood hazard modeling, to help identify severity of current flooding

Flood Prediction


Global Flood Awareness System (GloFAS) from the European Centre for Medium-Range Weather Forecasting (ECMWF) and the Joint Research Centre (JRC)

Flood Prediction


Global Flood Awareness System (GloFAS) from the European Centre for Medium-Range Weather Forecasting (ECMWF) and the Joint Research Centre (JRC)

Downscaling the river routing through integration with RAPID

Target: 2-week advance forecasting of major floods

One more application for soil moisture

- Working with NASA NLDAS model output for soil moisture, Gonzalo Espinoza (UT Austin) has developed a statistical analysis tool
 - Displays soil moisture grid cells colored by percentile, relative to historical averages from 1979 to present
- This can provide useful context to emergency response managers, preparing for new rain events in a given area
- Current work is to add runoff (useful in flood analysis) & evapo-transpiration (useful for drought analysis); and extend to all USA

Soil Moisture Statistics

Texas Soil Moisture map

Last update: Tuesday, August 19, 2014 Contact: Gonzalo E. Espinoza (gespinoza@utexas.edu)

Summary

- WMO Information System (WIS)
 - Global network of authoritative national agencies' data
 - WIS is being integrated with GEOSS for distributed search
- OGC/WMO Hydrology Domain Working Group <u>develops core</u> <u>standards</u> through OGC Interoperability Experiments & Pilots
- GEO/GEOSS provides an organizing principle for <u>implementing data</u> and map catalogs and services that works across boundaries between nations, institutions, and scientific / societal domains.
- **Crowdsourcing** is coming into use, taking advantage of citizen event monitoring.

A federated web of portals, data and tools for consistent data services is emerging – now we need to make this accessible and useful for emergency response in extreme events! David Arctur <u>david.arctur@utexas.edu</u>

Thanks!