Introduction of CIESS and Potential for Seasonal Hydrological Forecast in Texas

Zong-Liang Yang

(512) 471-3824 liang@jsg.utexas.edu

SCHOOL OF GEOSCIENCES

1st Water Forum, Austin, Texas, 13 February, 2012

Center for Integrated Earth System Science

- Formed in August 2011
- Director: Liang Yang
- Associate Director: David Maidment
- A cooperative effort between

ACKSU

SCHOOL OF GEOSCIENCES

http://www.jsg.utexas.edu/ciess

Center for Integrated Earth System Science

Integrate UT's expertise in geosciences, engineering, technology, observations, and modeling;

Promote wide ranging national and international collaborations;

Seek a deeper understanding of the physical, chemical, biological, and human interactions that determine the past, present, and future states of the Earth;

Place a strong emphasis on the societal impacts of research in earth system science; and

Provide a fundamental basis for understanding the world in which we live and seek sustainability.

http://www.geo.utexas.edu/ciess

SCHOOL OF GEOSCIENCES

Water Sustainability and Climate

- CIESS submitted an NSF WSC proposal in October 2011.
- Proposal Title: Water ARTS (Adaptability, Resilience, Transformability, and Sustainability) in Texas' Water
 Systems in the Face of Changing Climate, Land Use, and Human Demands.
- PI: Yang
- Co-PIs: Maidment, Eaton, Hendrickson, Kahlor
- Senior personnel: 12

Future Precipitation Projections in Texas from WCRP CMIP3

Unified Weather and Climate Modeling and Seamless Prediction

SCHOOL OF GEOSCIENCES

Peter Cox and David Stephenson, *Science,* 2007

1. Climate Mode? Weather Forecast Mode?

- 2. Uncertainty Quantification
- Different initial conditions (global + regional)
 Different emission
 - scenarios
 - Different
 - parameterizations
 - (physical + chemical) and parameters
- Different land use and land cover conditions

3. Integrated Modeling and Analysis

Crown copyright Met Offic.

Dynamic Seasonal Hydrologic Forecasts

Step 1: Seasonal climate forecasts: precipitation, temperature, radiation, winds, humidity; coarse spatial resolution, O(100 km)

Step 2: Seasonal climate downscaling: precipitation, temperature, radiation, winds, humidity; fine spatial resolution, O(10–1 km)

Step 3: Seasonal land surface forecasts; soil moisture, evapotranspiration, runoff, water table

Step 4: Seasonal river flow forecasts; river flow

Step 5: Seasonal reservoir forecasts; lake storage

Step1: Seasonal Climate Forecasts

Seasonal forecast: linking climate to weather for a seamless prediction (WWRP+WCRP)

Seasonal climate anomalies are predictable if there are strong anomalies in the slowly varying boundary conditions of SST and land surface conditions.

CGCM-based seasonal climate forecast since 1990s (numerical models, data assimilation, and computing resources).

> Operational seasonal forecast with CGCMs (NCEP, ECMWF, UKMO).

Yuan (2011); Shukla (2009)

Skill of the state-of-art seasonal climate forecast models

Percentage of positive Ranked Probability Skill Score (RPSS) for global monthly surface air temperature and precipitation anomaly Yuan et al., GRL, 2011

Month-1

Step 2: Seasonal Climate Dynamic Downscaling

Daily mean precipitation characteristics (JFM) Yuan and Liang (2011)

Dynamic Downscaling with Bias Correction Improves the PDF of Daily Maximum Temperature in Summer

The PDF is computed over the central US region (40°–50°N, 100°–85°W) at 60-km resolution

With mean value and

Xu and Yang (2012)

Seasonal hydrologic forecast system and its uncertainty

UT has world-class expertise in

 Understanding and modeling terrestrial hydrological processes & global water cycle Land Model for Climate Prediction Land Model for Weather Forecasts Mapping geospatial datasets Observing the global water cycle High Performance Computing Lonestar Ranger Stampede

Co-Chairs: David Lawrence (NCAR), Zong-Liang Yang (Univ of Texas at Austin)

Noah-MP Land Model for Weather Forecasts

- A new paradigm in land-surface hydrological modeling
- In a broad sense,
 - o Multi-parameterization \equiv Multi-physics \equiv Multihypothesis

A modular & powerful framework for

- o Diagnosing differences
- o Identifying structural errors
- o Improving understanding
- o Enhancing data/model fusion and data assimilation

o Facilitating ensemble forecasts and uncertainty quantification

Collaborators: Yang, Niu (UT), Chen (NCAR), Ek & Mitchell (NCEP/NOAA), and others

Gravity Recovery and Climate Experiment (GRACE)

- 8+ years of mission operation (Tapley et al., 2004)
- First-time global data of gravity (~100 km, monthly to 10-day)
- Unprecedented accuracy of mass variations
- Allowing a better understanding of the global water cycle

High Performance Computing

• Petascale [O(10¹⁵)] Computing Architectures

> Massively parallel supercomputers $(10^4 - 10^5 \text{ multi-core processors})$

World's "Fastest" Supercomputer in 2013 10 peta math operations per second (PFlops) 500,000 processors Texas Advanced Computing Center, UT-Austin Stampede January 2013

World's "Fastest" Supercomputer in 2011 579.4 trillion math operations per second (TFlops) 3936 nodes, 62976 core processors Texas Advanced Computing Center, UT-Austin Ranger 5/19/2011

Revolution in Modeling

Shuttleworth (2011)

The grid resolution of regional and global models has reduced hugely, and will continue to do so

e.g. 4 km resolution Weather Research and Forecasting (WRF)

www.nssl.noaa.gov/wrf

e.g. increasing spatial resolution in Global Models

Summary

- CIESS was formed to integrate UT's expertise in earth system science for the betterment of society.
- As high-resolution seasonal to decadal climate and hydrologic forecasts are emerging as a new paradigm for modeling and prediction research, CIESS is positioned to develop an integrated atmosphere-land-surface-river network modeling system, applicable to Texas for water resource applications; see Cedric David's talk.

