Ripe Research Areas for LCRA Water Supply

Ron Anderson, P.E., MBA, D. WRE Chief Engineer Lower Colorado River Authority

February 13, 2012

Lower Colorado River

Highland Lakes Chain

Lake Travis

Dam: Mansfield

Completed: 1941

Height: 278 Feet

Conservation Capacity: 1,131,650 AF

Generation Capacity: 102 MW

Lake Buchanan

Completed: 1937

Height: 145.5 feet

Conservation Capacity: 875,566 AF

Generation Capacity: 51.3 MW

Hydrologic Variability

Highland Lakes Reliable Inflow Frequency 1940-2011

LCRA's Water Management Plan

	When water in the lake is	On this date	Action prescribed in 2010 Water Management Plan
	Lake Travis and Buchanan are full at 2.011 million acre-feet		
We Are Here	Less than 94 percent full	Jan. 1 or July 1	Interruptible supplies cease for all customers except irrigation operations.
	Less than 1.7 million acre-feet	Jan. 1	Environmental releases for bays and estuaries are reduced to meet 150 percent of critical (to the extent of storable inflows).
	Less than 1.4 million acre-feet	At any time	Request firm customers to implement voluntary water use reduction measures to achieve a 5 percent reduction in use.
	Less than 1.4 million acre-feet	Jan. 1	Begin gradual curtailment of interruptible supply to irrigation operations. Amount of curtailment increases when water storage levels are lower. Environmental releases for instream flows are reduced to meet critical needs.
	Less than 1.1 million acre-feet	Jan. 1	Environmental releases for bays and estuaries are reduced to meet critical needs.
	900,000 acre-feet	At any time	Request firm customers to implement mandatory conservation restrictions. Meet with customers to develop curtailment plan should drought worsen.
	600,000 acre-feet	At any time	If criteria indicate that drought is worse than the Drought of Record, then begin pro rata curtailment of firm supply after ceasing interruptible supply (timing based on duration of drought).
	325,000 acre-feet	Jan. 1	No interruptible supply available.
	200,000 acre-feet	At any time	No interruptible supply available.

Criteria for Drought Worse than Drought Record

- 24 Months Since Lakes Last Full
- Inflow Deficit Exceeds Drought of Record
 Deficit
- Combined Storage Less Than 600,000
 Acre-Feet

Drought Extents

January, 1957

Municipal Intake Relocations on Lake Travis

All Boat Ramps Closed

Salinity in Matagorda Bay

Lake Travis Projections with Persistence and ONI

LCRA

El Niño/Southern Oscillation

Sea surface temperature SST departure (°C)

Average SST Anomalies 8 JAN 2012 - 4 FEB 2012

Sea surface temperature SST departure (°C)

Oceanic Niño Index (ONI)

Sea surface temperature SST departure (°C)

Ripe Areas for Potential Research

- Improved foresight relating to streamflows
 - Understand hydrologic effects of global processes (PDO, AMO, coupled GCMs)
 - Longer range
 - Reduced uncertainty
- Remote sensing of soil moisture related to streamflows
- Remote sensing of salinity in bays and estuaries
- Better measurement of evaporation from natural bodies and river courses
- Fingerprinting chemical constituents in surface and groundwater supplies

The Research Gap

- Precipitation
- Temperature
- Wetter/Drier
- PDSI
- SPI
- NAO
- Equal Chances
- Scenarios
- Ensembles

Ron Anderson Chief Engineer LCRA Strategic Resource Planning & Development Ron.anderson@lcra.org

