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[1] Monitoring Earth’s terrestrial water conditions is critically important to many
hydrological applications such as global food production; assessing water resources
sustainability; and flood, drought, and climate change prediction. These needs have
motivated the development of pilot monitoring and prediction systems for terrestrial
hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions
(~10-100 km) over continental to global domains. Adequately addressing critical water
cycle science questions and applications requires systems that are implemented globally at
much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in
the context of global land surface models. This opinion paper sets forth the needs and
benefits for a system that would monitor and predict the Earth’s terrestrial water, energy,
and biogeochemical cycles. We discuss six major challenges in developing a system:
improved representation of surface-subsurface interactions due to fine-scale topography
and vegetation; improved rcprc'-:cntatmn of land- atmoephcnc interactions and resulting
spatial information on soil moisture and evapotranspiration; inclusion of water quality as
part of the biogeochemical cycle; representation of human impacts from water
management; utilizing massively parallel computer systems and rcccnt computational
advances in solving hypcrrcmlutmn models that will have up to 10” unknowns; and
developing the required in situ and remote sensing global data sets. We deem the
development of a global hyperresolution model for monitoring the terrestrial water,
energy, and biogeochemical cycles a “grand challenge” to the community, and we call
upon the international hydrologic community and the hydrological science support
infrastructure to endorse the effort.
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Hyperresolution global land surface
modeling: Meeting a grand challenge
for monitoring Earth’s terrestrial water

An opinion paper by Wood, E. F., et al., 2011, WRR, 47, WO5301.
e A grand challenge to the community.
e Hyperresolution: O(1 km) globally; O(100 m) continental scales

o Need for hyperresolution: global food production; water
resources sustainability; flood, drought, and climate change
prediction

e Six major challenges:

e surface-subsurface interactions due to fine-scale topography and vegetation;
e |and-atmospheric interactions; soil moisture & evapotranspiration;

e inclusion of water quality as part of the biogeochemical cycle;

e representation of human impacts from water management;

e utilizing massively parallel computer systems in solving 10° unknowns; and
e developing the required in situ and remote sensing global data sets.
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Hyperresolution regional land surface
modeling for. Texas

An opinion presentation proposed today at Water Forum II.

A grand challenge to the community.

Hyperresolution: O(100 m) CONUS; O(10 m) Texas

Need for hyperresolution: Texas food production; water
resources sustainability; flood, drought, and climate change
prediction

Six major challenges:

surface-subsurface interactions due to fine-scale topography and vegetation;
land-atmospheric interactions; soil moisture & evapotranspiration;

inclusion of water quality as part of the biogeochemical cycle;
representation of human impacts from water management;

utilizing massively parallel computer systems in solving 102 unknowns; and
developing the required in situ and remote sensing data sets.
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How to obtain hyperresolution weather
data for. Texas?

O(10 m) is not feasible; but
O(1 km) is possible.
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Revolution in Modeling

Shuttleworth (2011)

The grid resolution of regional and global models has
reduced hugely, and will continue to do so

e.g. 4 km resolution Weather Research and Forecastlng (WRF)

Earth
Simulator

Progression of Climate Models

1990s

19 levels in 38 levels in
atmosphere atmosphere
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High Performance Computing
Petascale [O(101°)] Computing Architectures

» Massively parallel supercomputers (104-10> multi-core processors)

10 peta math operations per second (PFlops)
500,000 processors

Texas Advanced Computing Center, UT-Austin
Stampede

January 2013

579.4 trillion math operations per second (TFlops)

3936 nodes, 62976 core processors

Texas Advanced Computing Center, UT-Austin
Ranger

5/19/2011



Bridging the Gaps and Bridging the Scales
.

Global Weather/Climate
U R,
Julia Slingo, Chief Scientist
United Kingdom Met Office
Regional Weather/Climate

model: 25 - 12km Regional Impacts Model

; —_— .‘\.ﬁ Hydrology, Vegetation,

"4 Topography

Local downscaling

mode/: 4 - Tkm Local Decision-Making:

Land use, Water use,
Adaptive Responses
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While climate projections at O(100
year) timescales are useful, water
resource planning also needs climate
predictions at O(10 day) to O(1 year)
time scales!
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Dynamic Seasonal Hydrologic Forecasts

Step 1: Seasonal climate forecasts: precipitation,
temperature, radiation, winds, humidity; coarse spatial
resolution, O(100 km)

Step 2: Seasonal climate downscaling: precipitation,
temperature, radiation, winds, humidity; fine spatial
resolution, O(10-1 km)

Step 3: Seasonal land surface forecasts; soil
moisture, evapotranspiration, runoff, water table

Step 4: Seasonal river flow forecasts; river flow

Step 5: Seasonal reservoir forecasts; lake storage




Stepl: Seasonal Climate
Forecasts

Seasonal forecast: linking climate to weather for a seamless

prediction (WWRP+WCRP)

» Seasonal climate anomalies are predictable
if there are strong anomalies in the slowly
varying boundary conditions of SST and land
surface conditions.

»CGCM-based seasonal climate forecast

1990s

since data

(numerical models,
assimilation, and computing resources).
» Operational seasonal forecast with CGCMs

(NCEP, ECEMWF, UKMO).
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Skill of the state-of-art seasonal climate forecast models

Month-1 Month-2
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Percentage of positive Ranked Probability Skill Score (RPSS) for global monthly surface air

temperature and precipitation anomaly Yuan et al., GRL, 2011



Step 2. Seasonal Climate

Dynamic Downscaling

Daily mean precipitation characteristics (JFM) Yuenandtiang 201

a) Number of Rainy Days b) Maximum Dry Spell Length c) Daily Rainfall 95th Percentile d) Number of Rainy Days (Warm - Cold)
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Dynamic Downscaling with Bias
Correction Improves the PDF of Daily

Maximum Temperature in Summer

Black:
WRF simulation driven
—— WRF_NNRP - by NNRP

WRF_CAM
— = \WRF_CAMbc_ave ' _ Green:

|7 R CAbes WRF simulation driven
by GCM output without
bias correction

Daily maximum temperature

Blue:
With mean value bias
correction

Red:

With mean value and
variance bias
corrections
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The PDF is computed over the central US region
(40°-50°N, 100°-85°W) at 60-km resolution Xu and Yang (2012)




Seasonal hydrologic forecast system and its uncertainty

Xing Yuan & Eric Wood, Princeton University
Seasonal Climate Forecasts
from Dynamical Climate Models .
o climate forecast models:

Major uncertainty is from

Observed

downscaling, ensemble?

; Bayesian
O : .
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Uncertainty from IC:

offline simulation, data

assimilation

Uncertainty from LSM:
parameter calibration

and regionalization

Upgrading hydrologic
forecast system




UT has world-class expertise
In

Understanding and modeling terrestrial

hydrological processes & global water cycle

= | and Model for Climate Prediction
» [ and Model for Weather Forecasts

Mapping geospatial datasets
Observing the global water cycle

High Performance Computing
* | onestar
= Ranger
= Stampede
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Noah-MP Land Model for Weather

Forecasts

e A new paradigm in land-surface
hydrological modeling

e In a broad sense,
o Multi-parameterization = Multi-physics = Multi-
hypothesis
e A modular & powerful framework for
o Diagnosing differences
o Identifying structural errors
o Improving understanding
0 Enhancing data/model fusion and data assimilation

o Facilitating ensemble forecasts and uncertainty

quantification |
Niu et al. (2011); Yang et al. (2011)
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Gravity Recovery and Climate Experiment

(GRACE)

10 years of mission
olaeratlon (Tapley et
2004)

Cracatiak

First-time global data
of gravity (~100 km,

monthly to 10-day)

Unprecedented @ | « B "
accuracy of mass
variations

A”OWlng d bEtter terrestria
understanding of the water

storage

global water cycle ... [
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GRACE Mission

Science Goals

High resolution, mean & time
variable gravity field mapping
for Earth System Science
applications.

Mission Systems
Instruments
*KBR (JPL/SSL)
*ALC (ONERA)

Satellite
Launcher( JEurocko!
Operations (DLR/GSOC)

80il moisture

groundwater
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Z’ CIESS

CENTER FOR INTEGRATED EARTH SYSTEM SCIENCE

Formed in
August 2011
Director: Liang Yang

Associate Director:
David Maidment

A cooperative
effort between

Modeling

Development, Evaluation & Validation
J Prediction <

. L Attribution & Detection . .
Observing & Monitoring (ISG, ICES) Air Quality
(CSR) (CEER)

\
Physics, Chemistry,
Biology &
Mathematics

Agriculture & Water

Resources
(CRWR, CSWR)

(CNS, Integrative Biology) X oupler
z W B.osphe@ ; ﬁ Ge(?morphology,
J Sedimentology &

Advanced
Computational Supar. . EtGEIBRALD
had " computing : ol eposi l&rG\aMS”rocesses
Methods (TACC) :
(ICES) ‘

fi Energy, Environment
. Partners ' ips & Policy
Domestic and International Centers & (CIEEP, LBJ, ES)

Institutions
(NCAR, JPL, Hadley Center, Chinese Academy

of Sciences, ...)

Education, Outreach
& Communications
(ESI, JSG, CRWR)
| o—

Cockrell School
of Engineering

http://www.jsg.utexas.edu/ciess




Summary

e CIESS was formed to integrate UT’s
expertise in earth system science and
collaborate with national/international
communities for the betterment of society.

e As high-resolution seasonal to decadal
climate and hydrologic forecasts are
emerging as a new paradigm for modeling
and prediction research, CIESS is positioned
to develop an integrated atmosphere-land-
surface-river network modeling system,
applicable to Texas for water resource

applications.
JACKSON .
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