

An Imminent Transition to Drier Conditions in the United States?

Aiguo Dai

Department of Atmospheric & Environ. Sci., University at Albany, SUNY And National Center for Atmospheric Research (NCAR)

Invited Talk at Water Forum II: Texas Drought and Beyond Austin, Texas, 22-23 October, 2012

Questions to: adai@albany.edu

Related Papers:

- Dai, A., 2012: Increasing drought under global warming in observations and models. *Nature Climate Change*, published online on Aug. 5, 2012 (available <u>here</u>).
 Dai, A., 2011: <u>Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during</u>
- 1900-2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541. (PDSI Data) Dai, A., 2011: Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2, 45-65.

Outline

- Introduction:
 - Drought Indices, PDSI
 - Global warming & its potential impact on drought
- Observed global changes of drought
- Model Predictions
- U.S. precipitation & drought changes
- Conclusions

JJA 2011 Hottest on record

Texas

Some towns in western Texas went more than 60 straight days over 100 Ficar

How do we quantify drought?

- Drought Indices are used to monitor and quantify the areal extent and severity of drought
- Many drought indices are based on precipitation alone
- Some are based on P minus Potential Evaporation (PE)
- A few are based on a surface water balance model, such as the Palmer Drought Severity Index (PDSI).

- •Temperature affects PDSI through E
- Negative PDSI = dry conditions;
- PDSI< -3 : Severe drought
- Self-calibrated PDSI with Penman-Monteith PE (sc_PDSI_pm)

-Two soil layers in the PDSI model

PDSI correlates with observed soil moisture, streamflow, and water storage over land (Dai 2011)

(c) sc_PDSI_pm vs. GRACE Water Thickness Correlation

Observed Global Temperature Series 1850–2006

Drying Processes under Global Warming

- Increased surface radiation provides new energy for evaporation
- Higher temperatures increase atmospheric demand for water vapor
- Reduced precipitation frequency means more dry spells
- Larger warming over land than over ocean leads to
 - larger PE increases over land than over ocean
 - increases in water vapor transport from oceans can not match atmospheric demand over land → drier conditions over land.

Has drought increased during the recent warming?

Other Observational Evidence of Drying

Effect of Surface Warming on Drought Area

Do models predict increasing drought under GHG-induced global warming?

Climate models are imperfect, but useful for studying what MIGHT happen in the future.

We use CMIP5 multi-model ensemble mean to represent the GHGinduced change, as natural variations are small in the ensemble mean.

GHG = greenhouse gas

CMIP5 = the Fifth Coupled Model Inter-comparison Project, used for IPCC AR5

PDSI in 21st Century: PDSI<-3 = Severe Drought

SC-PDSI, 14 CMIP5 Models, RCP4.5, 2000-2009

SC-PDSI, 14 CMIP5 Models, RCP4.5, 2050-2059

SC-PDSI, 14 CMIP5 Models, RCP4.5, 2090-2099

Different PDSI Trends over the U.S.: Obs. vs. Model

SC-PDSI, 14 CMIP5 Models, RCP4.5, 2090-2099

What Caused the Historical Wetting Trend in the U.S.?

U.S. PDSI Time Series: 1923-2010

U.S. Precipitation Time Series: 1923-2010

IPO vs. Southwest U.S. Precip Correlation

(f) Precip Change(%) from 1977-1998 to 1999-2009, CanAM4

Change Patterns: 1999-2010 minus 1977-1998

29 NCAR

Meehl & Hu (2006)

Decadal Difference: 1999-2010 minus 1977-1998

Drying from 1977-1998 to 1999-2010 resulted mainly from IPO and other natural variations. NCAR

-1.8

-1.2

0.0

2.4

3.0

2.4

-3.0

-2.4

-1.8

-1.2

-0.6

What is the outlook for the near future?

Future Trends in Soil Moisture and PDSI due to Global Warming Only

Prediction of the IPO

- What controls the IPO phase change is not well understood
- Models still have difficulties in predicting the IPO
- If it follows previous cycles \rightarrow Cold phase 1999-2029, Warm phase 2030-2051

Future Changes Relative to 1977-1998

Model-simulated Soil Moisture Changes Global Warming Effect Only

Future PDSI Changes With/wihtout IPO Effect

Global Warming Mode: 1950-2099

PDSI Due to GHG-induced Global Warming Only

PDSI for Year: 2000

Available on YouTube: www.youtube.com/NcarUcar

Is this our future? Worst wild fire in Texas history!

Bastrop State Park: 14,000 acres, Nearly 600 homes destroyed. 5 Sept 2011

Sixty separate wildfires, whipped by strong winds, were burning across Texas on Monday, destroying hundreds of homes and killing at least two people: TIME

Summary

- Precipitation and streamflow data, together with PDSI, show a drying trend over most Africa, South and East Asia, southern Europe, eastern Australia and other regions since 1950;
- Recent warming appears to have enhanced drying over many land areas during the last 30 years;
- Model projections suggest severe drying in the 21st century over most land areas (including the U.S.), except northern high-latitudes and most Asia;
- Warm tropical Pacific SSTs led to the wet period from 1977-1998 over the U.S.;
- The switch to cold tropical Pacific SSTs since 1999 caused drier conditions over the U.S. during 1999-2011;
- The current dry conditions may last and worsen during the next 20 yrs as the IPO cold phase persists and global warming continues; and
- Even if the IPO switches back to a warm phase after 2030, the U.S. may still face dry conditions as the drying from global warming becomes large.