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 2009 Report on global climate change impacts in the 

United States (Karl et al) 

Projected Spring rainfall change by  2080s-2090S 

compared to that of 1971-2000 

Projected number of days when 

Ts>90F by 2080-2099 

Number of days when 

Ts>90F during 1961-1971 

IPCC AR4 models projected 15-30% 

decrease of rainfall and nearly double 

the number of days when T>90F.  



However, 

 Large inter-model discrepancy in projected future 
rainfall changes 

 Which projections should we believe?   

Projected rainfall change 

during April to June in 

2079-99 relative to 1979-

1999.  (source: Figs 10 and 

11 of Cook et al. 2008)  



How can we determine creditability of the CMIP5 

climate projection? 

 Does the multi-models ensemble projection necessarily out-
perform individual model projection over Texas and SC US? 

 
 Gleckler et al. (2008), Pierce et al. (2009):  An ensemble mean, 

especially a multi-model ensemble mean projection, can out-
perform the best quality model because the former allows 
cancellation of offsetting errors in the individual global models.  

 

 What should we do if majority of the models have similar biases?  



Criteria for our process-based model evaluation Metrics: 

Response to increase of the 

global sea surface temperature 

Surface meteorological 

conditions 

Surface water budget and 

drought indices 

Large-scale circulation  

Connection with ENSO 

 Relevant to climate 

projection 

 

 Capture processes 

that control droughts 

over Texas 

 

 Can be compared to 

long-term 

observations 



IPCC AR5 Models and Datasets Used for Evaluation: 
Datasets: 

 CPC US-Mexicao daily rainfall (Higgins et al. 1996), 

1°, 

 GHCN daily Tmax,Tmin (Vose et al. 1992), 2.5°  

 NLADAS (Rodell et al. 2004), ET, 1/8°, 1980-2007. 

 ERSSTv3b SST (Smith et al. 2008), 2.0°, 1854-2005 

 NCEP reanalysis (Kalney et al 1996; Kistler et al. 

2001), 2.5°, 1948-present 

All the datasets and models are re-mapped to 2.5° spatial 

resolution 

Periods:  

 1950-2005; meteorological data 

 1980-2005: surface energy/water balance. 

Table 1. Description of CMIP5 models used in this study 1 

Model (Fig 

marker) 
Institute (Country) 

Available 

Ensembles 

Components 

(Resolutions) 
Calendar Reference 

CCSM4 

(A) 

National Center for 

Atmospheric 

Research (USA) 

6 
F09_g16 

(0.9×1.25_gx1v6) 
No leap 

Gent et al., 

2011 

GFDL-

ESM2M 

(B) 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory (USA) 

1 

Atm: AM2 

(AM2p14, 

M45L24) 

Ocn: MOM4.1 

(1.0° lat ×1.0° lon, 

enhanced tropical 

resolution: 1/3 on 

the equator) 

No leap 

John 

Dunne et 

al., 2012 

GFDL-

ESM2G 

(C) 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory (USA) 

1 

Atm: AM2 

(AM2p14, 

M45L24) 

Ocn: MOM4.1 

(1.0° lat ×1.0° lon, 

enhanced tropical 

resolution: 1/3 on 

the equator) 

No leap 

John 

Dunne et 

al., 2012 

GISS-E2-R 

(D) 

NASA/Goddard 

Institute for Space 

Studies (USA) 

5 

Atm: GISS-E2 

(2.0° lat ×2.5° lon) 

Ocn: R 

No leap 
Schmidt et 

al., 2006 

HadGEM2-

CC 

(E) 

Met Office Hadley 

Centre (UK) 
3 

Atm: HadGAM2 

(N96L60) 

Ocn: HadGOM2 

(Lat: 1.0-0.3 Lon: 

1.0 L40) 

360 d/y 

Collins et 

al., 2011; 

Martin et 

al., 2011 

MPI-ESM-

LR 

(F) 

Max Planck Institute 

for Meteorology 

(Germany) 

3 

Atm: ECHAM6 

(T63L47) 

Ocn: MPIOM 

(GR15L40) 

Gregorian 

Raddatz et 

al., 2007; 

Marsland 

et al., 2003 

IPSL-

CM5A-LR 

(G) 

Institut Pierre Simon 

Laplace (France) 
5 

Atm: LMDZ4 

(96×95×39, 1.875° 

lat ×3.75° lon) 

Ocn: ORCA2 

(2×2L31, 2.0° lat 

×2.0° lon) 

No leap 
Marti et 

al., 2010 

MIROC5 

(H) 

AORI, NIES & 

JAMSTEC (Japan) 
4 

Atm: AGCM6 

(T85L40) 

Ocn: COCO 

(COCO4.5) 

No leap 
Watanabe 

et al., 2010 

MRI-

CGCM3 

Meteorological 

Research Institute 
3 

Atm: GSMUV 

(TL159L48) 
Gregorian 

Yukimoto 

et al., 2011 

South-Central (SC) 

US Domain 



Evaluate seasonal cycles of climatic surface conditions: 

 Cold bias in daily maximum surface temperature (Tmax) 

 Wet biases in Precipitation (P), Evapotranspiration (ET), 

esp. during spring & summer 

 Large discrepancies in seasonal rainfall 

	 	

Black line: observations, Bold Red line: multi-model ensemble mean 



Probability distributions  of 

Tmax, Tmin, P and drought 

indices (SPI6 and SPI9) 

	

	

 Tmax: underestimate warmer Tmax 

and overestimate cooler Tmax 

 

 Tmin: underestimate cooler Tmin, 

overestimate warmer Tmin (consistent 

with wet bias) 

 

 P: underestimate non-rain and heavy 

rainrate, overestimate light rainrate 

 

 SPI: reasonably realistic, but 

underestimate intensity of extreme 

drought. 

 

Black line: observation, Orange line: multi-model 

ensemble 



Number of days/yr when Tmax>90F & 100F: 
 Reverse the E-W gradient of extreme Tmax over Texas,  

 Most of models overestimate occurrence of extreme Tmax over the southeastern 

Great Plains,  

 Large inter-model discrepancies 

Tmax>90F Tmax>100F 

 highlight better models 



Evaluation of Large-scale atmospheric circulation: 

 Most of the models underestimate the 500hPa ridge over 

central US in summer and strength of jet in spring (except 

for CCSM4). 

 Probably responsible for wet and cold biases in spring and 

summer.  

Figure 6: Comparison of the modeled Z500hPa pattern by each CMIP5 

models with that of NCEP-CDAS1.  

  

 

Obs 

*Circles highlight better models 



 1/2 models underestimate lower tropospheric 
westerly winds (U850) in spring and summer. 

 Underestimate lower tropospheric southerly winds 
(V850) in spring 

U850 hPa  

V850 hPa  

Obs 



About a half of the models  

 underestimate correlation with ENSO in winter 

 overestimate ENSO connection in spring, summer and fall 

 Because of errors in ENSO teleconnection pattern (not shown) 

 
Figure 9: Correlations 

between Niño4, Niñ3 

and SC US rainfall.  

“Star” indicates 

significant correlation 

coefficient at 95% 

confidence level using 

student t-test. 

  

Correlation between SC US rainfall anomalies and Nino3 

and Nino4 indices: 



Leading REOF of global SST 

variance during 1900-2005: 

 Observation shows the 
global increase of sea 
surface temperature 
(SST) as the leading 
mode for SST variance 
(Schubert et al. 2008). 

 Few models 
realistically capture 
this global increase of 
SST mode (CCSM4 and 
MPI) 

 

 

 

: Fail to capture the warming mode 



Modeled response of summer rainfall over SC US to 

the increasing global SST mode: 

 Most of the models 
underestimate the 
change of summer 
rainfall over SC US 
associated with global 
increase of SST over the 
period of 1900-2005. 

 

 Only CCSM4 captures 
the observed 
relationship between the 
increase of global SST 
mode and increase of 
summer rainfall over SC 
US. 

	

obs 

Obs: 10-yr running mean 

Rainfall change related to 

global increase of SST 
Multi-model ensemble mean Rainfall 

change in IPCC AR5 historical runs 



Ranking the models using our process-based metrics: 

Table 2: Ranking of model performance for SC US regional climate change 1 

Variables  Models 

 CCSM4 GFDL-

ESM2G 

GFDL-

ESM2M 

GISS-

E2-R 

HadGE

M2 

MPI IPSL MIROC

5 

MR

I 

 

 Tier-1: Forced variability or change 

 Correlation with global SST warming: 

aGW 1 3 1 3 2 3 3 3  3 

GWSST 2 1 3 1 3 2 2 3  2 

Subtotal 1.5  2   2    2 2.5 2.5 2.5 3 2.5 

  

 Seasonal cycle: 

Tmax 1 2 2 2 1 2 3 1  2 

Tmin  2 1 1 1 3 1 3 2  1 

q 1 1 2 1 3 1 3 1  1 

Subtotal 1.3 1.3 1.7 1.3 2.3 11.3

3 

3 1.3  1.3 

           

PDTmax 3 3 3 3 3 3 3 3  2 

PDRR 2 2 2 2 2 2 2 2  1 

P 1 3 3 2 3 1 2 2  3 

ET 3 2 2 3 2 2 2 2  2 

SPI6 2 2 2 2 2 2 2 2  2 

SPI9 2 2 2 2 2 2 2 2  2 

Subtotal 2.2 2.3 2.3 2.3 2.3 2 2.2 2.2  2 

           

Z500 2 3 3 3 2 2 3 2  3 

U850 1 2 2 2 2 1 1 2  2 

V850 2 2 2 2 1 2 2 2  2 

Subtotal 1.7 2.3 2.3 23 1.7 11.7 2 2  2.3 

           

 Tier-2: natural variability 

rp,Niño3 3 2 2 1 3 3 3 2  3 

SZ500, 

Niño3 

2 2 2 3 3 3 3 3  3 

rp,Niño4 3 2 2 1 3 3 3 2  3 

SZ500, 

Niño4 

2 2 2 3 3 3 3 2  3 

Subtotal 2.5 2 2 2 3 3 3 2.3  3 

           

 2 

Response to increase of the 

global sea surface temperature 

Surface conditions 

Surface water budget and 

drought indices 

Large-scale circulation  

Connection with ENSO 

CCSM4 overall ranks the best, 

especially in SC US rainfall 

response to increase of global 

SST. 



Projected change of Tmax during 2073-2099 relative to 1979-2005: 

 Models consistently project a 

disproportional increase of 

occurrence of high Tmax (>90F - 

108F) by  

 

 25-50% under low emission 

(but unlikely RCP4.5) scenario 

(CO2 reaches 650 ppm by 

2100) 

 

 50-100% under high emission 

(business as usual, RCP8.5) 

scenario (CO2 reaches 

1350ppm by 2100) 

 

 Recall that these models tend to 

underestimate Tmax.   
	Multi-model 

ensemble projection 

Best performing 

model projection 



	

Projected change of Tmin in 2073-2099 relative to 1979-2005. 

 Models consistently 

project a strong 

increase of occurrence 

of Tmin≥80F several 

folds under the high 

emission (RCP8.5) 

scenario. 

 

Multi-model 

ensemble projection 

Best performing 

model projection 



 Increase of non-

rainy days and 

low rainrate and 

decrease of 

medium rainrate. 

	

Projected change of rainrate in 2073-2099 relative to 1979-
2005. 

increase 

decrease 



Projected change of surface net water flux in 2073-2099 

relative to 1979-2005: 

Under the high emission (business as 
usual, RCP8.5) scenario:   
 

 

 Both multi-models and best 
performing model project net 
drying, by ~20% of P-ET in spring 
and summer, despite  differences in 
details. 

 

 Increase of rainfall (P) and ET 
during winter and spring, decrease 
of rainfall and ET in summer. 

 

 Net drying in spring is dominated by 
increase of ET, whereas drying in 
summer is dominated by decrease 
of P. 

 

 Outliners in projections tends to be 
the worst performing models. 

	

DP 

DET 

D(P-ET) 

Best performing 

model projection 

Multi-model projection 



Conclusions:  

 The 9 climate models that participated in the IPCC AR5 
we evaluated 

 share common wet and cold biases, due to underestimate 
mid-tropospheric ridge in summer, the upper-level jet 
strength and westerly low-level winds in spring.  Most of the 
models cannot adequately capture the changes of SC US 
rainfall with  ENSO and the increase of global SST. 

 consistently project ~20% decrease of net P-ET (dry) in 
spring-summer by 2073-2099 relative to 1979-2005, under the 
“business as usual” emission scenario (RCP8.5), despite 
differences in  details.  

 


