Fire, Earth, and Water: Soil Moisture Dynamics across a Wildfire Burn Boundary Resulting from the 2011 Labor Day Bastrop County Complex Fire

Michael R. Kanarek, M. Bayani Cardenas

Dept. of Geological Sciences, The University of Texas at Austin

Research questions

- How does wildfire affect soil moisture dynamics?
- What effect do the subsequent changes in vegetative cover have on soil moisture?
- How effective and consistent are various techniques for monitoring any soil moisture differences across the burn boundary?

Bastrop State Park

- ~50 km SE of Austin
- 6,500-acre park

- Home to "Lost Pines"
- Loblolly pine dominates

Sept. 4 2011 wildfire

- More than 33,000 acres were burned
- Burned 96% of Bastrop State Park

September 2011 drought conditions

Facing North Facing South

Field site

- On border of moderately burned and scorched areas
- Study transect runs north-south
- Work has become increasingly hazardous as trees fall

Methods

- Electrical resistivity imaging
- Surface water content (θ) measurements using electrical permittivity (dielectric constant) measurements
- Vertical θ profiles using electrical permittivity measurements
- In-situ infiltration measurements
- Soil texture analysis

Precipitation data and trip dates

Electrical resistivity (ER)

- Resistivity can be affected by soil moisture, geology, salinity
- Based on Ohm's law: R = V / I

R = calculated resistance

V = potential difference measured

I = injected current

 Surveys conducted monthly using a 56 electrode array spaced 3 m (Advanced Geoscience Inc.) with dipole-dipole and schlumberger array configurations

Unburned end, looking north

Burned end, looking south

Delta-T Devices Theta probe ML2x

- Measurements taken at each electrode along the transect
- Senses dielectric constant of the soil, which is converted to soil moisture
- Essentially point measurements of soil moisture at the surface

Surface soil moisture distribution

Delta-T Devices PR2 profile probe

- Monthly measurements taken at 4 points along study transect
- Measures a vertical moisture profile at 6 depths, up to 1 m
- Uses EM fields to measure permittivity, which is converted to soil moisture

Vertical soil moisture profiles

Bringing everything together

Key observations

Unburned end

Burned end

- Drier soil
- Less wetting response due to infiltration from rainfall
- Vertically uniform moisture profile, with minimum ~20-40 cm, even during wetting

- Wetter soil
- More wetting response due to infiltration from rainfall
- Generally drier at the top, wettest at the bottom, including during wetting

Loblolly pine (Pinus taeda)

- Favor extensive shallow lateral root systems (lateral roots typically shallower than 50 cm)
- Roots typically spread farther than tree crowns
- Rooting depth varies, but usually found no deeper than ~50 cm in mature trees; tap root usually less than 1 m
- Gets water from the upper 40 cm when it is available

30-yr Normal Precipitation: Annual Period: 1981-2010

Some climate indices for the site

Mean annual precipitation = 96 cm/yr Actual evapotranspiration = 70-80 cm/yr (Selnick and Sanford [2013]) Potential evapotranspiration = 146 cm/yr (texaset.tamu.edu)

The trees and vegetation are thirsty because the atmosphere is thirsty!

Throughfall and canopy interception

From Soto and Diaz-Fierros [1997]

Unburned area: 88% throughfall Burned area: 58% throughfall

From Stogsdill et al. [1989, 1992]

Decreasing loblolly pine stand density increases throughfall

Macropores

From Beven and Germann [2013]

Dead roots are one of the most common macropores

Key observations

Unburned end 2

- Drier soil
- Less wetting response due to infiltration from rainfall
- Vertically uniform moisture profile, with minimum ~20-40 cm, even during wetting

Burned end

- Wetter soil
- More wetting response due to infiltration from rainfall
- Generally drier at the top, wettest at the bottom, including during wetting

Likely causes

- Tree transpiration
- Canopy interception of rainfall
- Root water uptake

- No transpiration, just evaporation
- Mostly throughfall of rain
- Dead roots serve as macropores

Implications

- Burned areas will store and transmit more water, at least in the near term
- The increased soil moisture in the burned areas are ideal for vegetation recovery
- Groundwater recharge might be enhanced
- Leaching or displacement of 'zone of illuviation', aka B horizon

Any burning questions?

