# LAND COVER EFFECTS ON WATERSHED HYDROLOGIC MEMORY

### Jason P. Julian Robert H. Gardner







### Watershed Hydrologic Memory





![](_page_3_Picture_0.jpeg)

# Runoff affected by ...

#### **Morphometric variables**

Area (A)

Stream order  $(O_{HS})$ 

Drainage density  $(D_d)$ 

Mean channel slope  $(S_c)$ 

Basin shape  $(R_f)$ 

**Geologic variables** Silt-clay percentage (*SC*%)

Soil depth to bedrock  $(Z_{br})$ 

Hydrologic variables

Reservoir storage percentage (RS%)

Precipitation effectiveness ratio  $(R_{pe})$ 

Land-cover variables
Percent water-wetland (%WW)
Percent urban (%UR)
Percent forest (%FO)
Percent agriculture (%AG)

# Eastern Piedmont – 87 watersheds

- Similar morphometry
  - Pear- or oval-shaped
  - Dendritic drainage
- Moderate relief
  - neither topographic or subsurface controls dominate
- Similar geology
  - Thick clay-rich soils
  - Deeply weathered bedrock
- Similar climate
  - Mid-latitude, humid subtropical
  - No dry season
- Many flow gages with long continuous daily records

![](_page_5_Figure_13.jpeg)

![](_page_6_Figure_0.jpeg)

# Runoff affected by ...

#### **Morphometric** variables

Area (A)

Stream order  $(O_{HS})$ 

Drainage density  $(D_d)$ 

Mean channel slope  $(S_c)$ 

Basin form ratio  $(R_f)$ 

**Geologic variables** Silt-clay percentage (SC%)

Depth to bedrock  $(Z_{br})$ 

#### Hydrologic variables

Reservoir storage percentage (RS%)

Precipitation effectiveness ratio  $(R_{pe})$ 

Land-cover variables Percent water-wetland (%WW) Percent urban (%UR) Percent forest (%FO) Percent agriculture (%AG) What about stationarity with respect to climate?

We use the same 40-y (1968-2007) records for all watersheds

Which period or frequency will you analyze?

All of them

![](_page_9_Figure_0.jpeg)

### **Power Spectral Analysis** (think temporal correlation using a moving window)

![](_page_10_Figure_1.jpeg)

#### **Rainfall - (white-noise) Runoff - (red-noise)** NUC.csv NUC.csv 0.5 φ 0.0 ထို power power -0.5 -10 -1.0 -12 N = 7500 N = 7500 -1.5 -10 -10 -2 -8 -6 0 -8 -2 0 log(1/freq) log(1/freq) $f_{cp} = 6.0 \pm 1.3$ - $\beta_{hf} = 1.84 \pm 1.15$ - $\beta_{lf} = 0.45 \pm 0.16$ $f_{cp} = 5.6 \pm 0.6$ cross-point $-\beta_{hf} = 0.42 \pm 0.05$ Short-term memory $-\beta_{lf} = 0.02 \pm 0.02$ Long-term memory

# Do landscape attributes dictate a catchment's hydrologic memory?

| Spectral Variable                | Best landscape predictor<br>(r) | Stepwise model $r^2$<br>( $\alpha = 0.05$ ) |
|----------------------------------|---------------------------------|---------------------------------------------|
| Daily power, $P_d$               | %Wetland (-0.49)                | 0.57                                        |
| Annual power, $P_a$              | %Wetland (0.41)                 | 0.21*                                       |
| Spectral slope, $-\beta_0$       | %Wetland (0.57)                 | 0.62                                        |
| Cross point power, $P_{cp}$      | %Urban (0.50)                   | 0.39                                        |
| Cross point frequency, $f_{cp}$  | <i>Slope</i> (-0.32)            | 0.20*                                       |
| Long-term memory, - $\beta_{lf}$ | %Urban (-0.47)                  | 0.43                                        |
| Short-term memory, $-\beta_{hf}$ | %Wetland (0.55)                 | 0.58                                        |
|                                  |                                 | * Low                                       |

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

**Urban Thresholds** 

![](_page_14_Picture_2.jpeg)

#### Stream biota studies with 10-15% threshold

- Paul and Meyer, 2001, Ann Rev Ecology, Evolution, and Systematics
- Utz et al., 2009, *Ecological Indicators*
- Roy et al., 2003, *Freshwater Biology*

![](_page_15_Figure_0.jpeg)

## **Urban Thresholds**

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

40

-10

0

20

**cp** = 13%

60

80

100

Affects hydrologic drought?

### Longitudinal Spatial Patterns in Spectral Variables

**Stream Order** 

![](_page_16_Figure_2.jpeg)

![](_page_17_Figure_0.jpeg)

### A matrix for characterizing Hydrologic Signatures?

|                   | Climate-<br>influenced | Landscape-<br>influenced |
|-------------------|------------------------|--------------------------|
| Low<br>frequency  | <b>P</b> <sub>a</sub>  | -β <sub>lf</sub>         |
| High<br>frequency | f <sub>cp</sub>        | -β <sub>hf</sub>         |

### Land Cover Effects on Runoff

- Land cover can have considerable and <u>predictable</u> effects on runoff patterns (aka watershed memory)
- I0-15% urban threshold above which urban coverage becomes the dominant control on runoff patterns
- Downstream threshold (after 3<sup>rd</sup>-order) where watershed processes become dominant over precipitation in determining runoff patterns in Eastern Piedmont
- Matrix for hydrologic signatures:
   [climate vs. landscape effects] [low vs. high frequency events]

![](_page_20_Picture_0.jpeg)

# **Questions?**

### Jason.Julian@txstate.edu

HYDROLOGICAL PROCESSES Hydrol. Process. (2013) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/hyp.9692

#### Land cover effects on runoff patterns in eastern Piedmont (USA) watersheds

Jason P. Julian<sup>1\*</sup> and Robert H. Gardner<sup>2</sup>

<sup>1</sup> Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK 73019, USA <sup>2</sup> Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA