SIMULATING THE FEASIBILITY AND PERFORMANCE OF A REAL-TIME WATER MARKET BY COUPLING AN AGENT-BASED MODEL AND RAPID MODEL - A CASE STUDY IN GUADALUPE RIVER BASIN

Erhu Du¹, Barbara Minsker¹ and Ximing Cai¹,

¹Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign

Research Question:

- What would be the potential impacts of a realtime water market in Guadalupe River Basin (GRB)?
 - Assess impacts on:
 - Profits and losses
 - River flows
 - Resilience to drought

Coupled agent-based modeling and RAPID river flow modeling approach

Irrigation Water Use

Water Use Type in GBR					
water ose type in obt					
DOM	Domestic	MUL	Multiuse		
HYD/P	Hydroelectricity	MUN	Municipal use		
IRR	Irrigation	NON	Non-consumptive		
IND	Industry	REC	Recreation		
INS	In stream	ОТН	Other use		

Irrigation users are major water right holders and water consumers: initial study focus.

Agent-based Modeling

simulate the actions and interactions of <u>autonomous agents</u> (each agent follow individual behavior rule and can learn to update the rule) with a view to assessing their <u>effects on the system as a whole</u>.

Starling flock pattern

Agent-based Modeling Components

Agents & Attributes

Entity = Customer

Customer ID
First Name
Surname
Date of birth
Address
Phone no.

These are the 'attributes' for the entity 'customer'

Teach-ICT.com

Behavior & Learning Rules

Interaction Topology

Environment

Initial Study: Agricultural Water Rights Trading

Assess impacts of water rights trading on:

- Crop yield
- Irrigation technology diffusion rate
- Resilience to drought

Define Agriculture Agents

 Assumption: farmers are utility maximizers -- their objective is to maximize profit from crop yield

max:
$$Y = Y_d + (Y_m - Y_d)[1 - (1 - I_r/I_m)^{\beta}]$$
, (Hu, 2013)

Y: crop yield (bushel/acre)

 Y_d : rain-fed yield without artificial irrigation (bushel/acre)

 Y_m : maximum yield without water shortage(bushel/acre)

 I_m : maximum irrigation amount (inch/acre)

 I_r : Irrigation amount (inch/acre)

 β : Irrigation efficiency index, $0 < \beta < 1$

Agriculture Agent Attributes

• 1) Soil types

Agent Attribute 1: Soil Type				
Туре	Ym (bushel/acre)	Yd (bushel/acre)		
1 #	152.57	67.74		
2 #	181.75	159.21		
3 #	257.29	63.04		

• 2) Water rights priority order

Agent Attribute 2: Water Right Priority Order				
Order	1 #	2#	3#	

• 3) Irrigation technology diffusion index

Agent Attribute 3: Irrigation Technology Diffusion Index				
Туре	Index (θ)	Investment Payback Period		
1 #	0.2	5 years		
2 #	0.5	2 years		

Agent Interacting Environment

Agent-based Modeling Setup

Results for Kendall County: Crop Yield

Results for Kendall County: Crop Yield & System Resilience

Crop Yield Comparison

Agriculture System Resilience to Drought

Both crop yield and agriculture system resilience improve about 10% by using a water market when conditions are dry.

Results for Kendall County: Irrigation Technology Diffusion

Irrigation technology adoption rate is faster if farmers are allowed to trade their water rights.

Conclusions

- Allowing agriculture water right trading could increase crop yield and resilience to drought
- Irrigation technology could diffuse faster with a water market

Future Work

- Couple RAPID model with agent-based model to evaluate water market's impacts on river flow
- Include other water users
- Consider transaction costs of water trading and effects of incomplete information on agents' decision-making processes
- Evaluate different auction mechanisms for water trading