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Integrated River Modeling

Atmospheric Model 
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“Blue Line” River Network -
High-Performance Computing 

River Network Model

Land Surface 
Model



RAPID
• Routing Application for 

Parallel computatIon of 
Discharge)

• Computes flow and 
optimizes model 
parameters

• Model code, input data and 
animations are available 
online

• Can run on 
supercomputers

http://www.ucchm.org/david/rapid.htm
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Who made RAPID possible?
• UCAR Advance Study Program
• CUAHSI Hydrologic Information System (NSF EAR-0413265)
• NASA Interdisciplinary Science Projects (NNX07AL79G and 

NNX11AE42G)
• Ecole des Mines de Paris
• AGU Horton (Hydrology) Research Grant
• David Maidment, Florence Habets, Zong-Liang Yang, David 

Gochis, Jay Famiglietti
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Last we talked…
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David et al. (2013a Env. Model. & Soft)

Water Forum 1
13 Feb 2012



Since then…
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David et al. (2013b Water Resour. Res.)

Flow wave propagation 
and parallel computing



Also, moved to California
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Reservoirs and river modeling
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Sacramento River at Freeport, CA
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Klamath River near Klamath, CA



What does a reservoir do?

10Daily flow for the year 2000, Shasta Lake

Water resources
management

Flood control

Shasta Lake



Treatment for reservoirs is 
needed!!!

11storage

Shasta Lake



Research motivations

• Add a simple reservoir model to RAPID 
that is based on natural physics
– Advantages:

• First step to reservoir modeling
• Get started on coupling rivers/reservoirs

– Limitations:
• Does not explicitly account for storage of water as 

water supply and for corresponding management 
practices
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Bernoulli Principle applied to 
reservoirs
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Daniel Bernoulli 
(1700-1782)
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For incompressible and inviscid fluids

Assuming water height is 
almost constant

Linear reservoir equation



Response of a linear reservoir
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1outQ V


 
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     1 1out
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Continuity equation 
(conservation of mass)

Linear reservoir equation

First order linear differential equation

Storage can be removed from the equation!!!

First order low-pass filter 



Some review of existing 
literature

• Sherman, 1932, Streamflow from rainfall by the unit hydrograph 
method, Eng. New-Record

• Clark, 1945, Storage and the unit hydrograph
• Zoch, 1934, 1936, 1937, On the relation between rainfall and 

streamflow, Monthly Weather Rev.
• Nash, 1955, The relation of streamflow to rainfall, ME Thesis, 

Univ College, Galway
• Nash and Farrel, 1955, A graphical solution of the flood-routing 

equation for linear storage-discharge relation, Trans. AGU
• Dooge, 1956, Synthetic unit hydrographs based on triangular 

inflow, MS thesis, Univ. Iowa
• Nash, 1957, The form of the instantaneous unit hydrograph, Int. 

Assoc. Hydrol. Sci. Gen. Assemb.
• Nash, 1959, Systematic Determination of unit hydrograph 

parameters, JGR
• Nash, 1959, A note on the Muskingum flood routing method, JGR
• Dooge, 1959, A General Theory of the Unit Hydrograph, JGR
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James Dooge 
(1922 – 2010)

James Nash
(1927-2000)



Classic responses of low-pass 
filters
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Unit impulse (Dirac delta function) Square signal (or succession 
of unit step functions)

Flood wave??? What if we assume first half of 
sine wave ???



Response of linear reservoir to 
sine wave (analytical solution)
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Inflow and outflow vs time
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T=20
τ=1



Inflow and outflow vs time
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T=20
τ=2



Inflow and outflow vs time

20

T=20
τ=5



Inflow and outflow vs time
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T=20
τ=10



Inflow and outflow vs time
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T=20
τ=20



Inflow and outflow vs time
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T=20
τ=40



Inflow and outflow vs time
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T=20
τ=100



What did we observe???
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T=20
τ=10

T

tlag



Some characteristics of these 
hydrographs

• The outflow seems to be a periodic signal of 
same period as inflow, but: 
– with a different phase (outflow delayed)
– with a different magnitude (outflow smaller)

• The difference in phase seems to increase with 
the value of  τ/T but reaches a maximum for 
large values of τ /T

• The difference in magnitude seems to increase 
with the value of τ/T 

• The initial peak of the outflow is higher than the 
following peaks 26



Quantification of the difference 
in phase
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If tlag is close to T/4, 
(i.e. τ/T>>1) impossible 
to get an accurate 
estimate of τ



Some maths…

• Taylor’s series expansion
• Resolution of a second order polynomial
• Assumption that max[Qout] is small
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Brook Taylor 
(1685-1731)
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Application to Shasta Lake
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Jan – Mar 2000, daily

T/4

Max[Qin]

Max[Qout]

Rising limb of Qin=5 days
Rising limb of Qout=5 days
Tlag=5 days
Max[Qin]=73,332 cfs
Max[Qout]=40,776 cfs

1 14 5 6.4544776 4
73332
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Numerical approximation for 
linear reservoir
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Leonhard Euler 
(1707-1783)
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First order 
explicit Euler 
Method applied 
to Continuity Eq
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

  Linear 
reservoir Eq

Numerical 
method for 
linear reservoir



Inflow, outflow and numerical 
outflow vs time
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T=20
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Inflow, outflow and numerical 
outflow vs time
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T=20
τ=2



Inflow, outflow and numerical 
outflow vs time
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T=20
τ=5



Inflow, outflow and numerical 
outflow vs time
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T=20
τ=10



Inflow, outflow and numerical 
outflow vs time
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T=20
τ=20



Inflow, outflow and numerical 
outflow vs time
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T=20
τ=40



Inflow, outflow and numerical 
outflow vs time
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T=20
τ=100



Reservoir modeling of Shasta 
Lake

38

Jan – Mar 2000, daily



RAPID with and without linear 
reservoirs

39Shasta Lake

Applied to the two biggest 
reservoirs in California.

RMSE and efficiency 
improved a the five 
corresponding downstream 
stations.

Results are statistically 
significant!!!



Thank you!

40chdavid@uci.edu
http://www.ucchm.org/david/


