Image integration with learned dictionaries and application to seismic monitoring
Youli Quan, Tieyuan Zhu and Jerry M. Harris, Stanford University; Roy M. Burnstad, Saudi Aramco; Sergio E. Zarantonello, Algorithmica LLC

Summary
Sparse coding can be applied to train an overcomplete dictionary on time-lapse seismic data or images. The learned dictionary generally consists of sparse representations of one or more images. We then use such sparse representations, along with L_1-regularization techniques, to predict missing values in seismic images by solving an inverse problem. The practical outcome of the proposed methodology can be a significant reduction in field operational costs by requiring only sparse instead of dense surveys, and by integrating in the seismic images the information captured by the learned dictionary from previous time-lapse and baseline images. A synthetic example is presented to test the method.

Introduction
Time-lapse seismic (4-D seismic) detects saturation and pressure changes in a reservoir, thereby helping optimize recovery and reducing the costs of field operations. In CO$_2$ enhanced oil recovery and storage, for example, injected CO$_2$ is used to increase oil production and reducing the costs of field operations. In CO$_2$ pressure changes in a reservoir, thereby helping optimize operational costs by requiring only sparse instead of dense surveys, and by integrating in the seismic images the information captured by the learned dictionary from previous time-lapse and baseline images. A synthetic example is presented to test the method.

Sparse coding can be applied to train an overcomplete dictionary on time-lapse seismic data or images. The learned dictionary generally consists of sparse representations of one or more images. We then use such sparse representations, along with L_1-regularization techniques, to predict missing values in seismic images by solving an inverse problem. The practical outcome of the proposed methodology can be a significant reduction in field operational costs by requiring only sparse instead of dense surveys, and by integrating in the seismic images the information captured by the learned dictionary from previous time-lapse and baseline images. A synthetic example is presented to test the method.

Time-lapse seismic usually consists of one baseline and several time-lapse surveys. The image integration methodology in this setting is to adaptively train an overcomplete dictionary (or basis functions) on a set of baseline and previous time-lapse images, and then use the learned dictionary to predict missing values in the current seismic image. For certain cases, “missing data recovery” and “image integration” have similar meaning and are used interchangeably in this abstract.

Another potential application of image integration is quasi-continuous or real-time seismic monitoring. The concept was applied to missing data in an approach to quasi-continuous 4-D monitoring (Arogummati and Harris, 2009, 2010). In this situation we need to collect and process data much more frequently than in conventional 4-D seismic. This, in practice, may signify sparse acquisition because of operational costs and/or technical acquisition issues. Sparse data usually results in low spatial resolution and/or incomplete subsurface images. However, quasi-continuous (and real-time) monitoring has high temporal resolution. If we use learned dictionaries to integrate time-lapse subsurface images, we can recover the missing values and may also improve the spatial resolution. We demonstrate this application via a synthetic example. Arogummati and Harris (2010) used a data-estimation-based method for quasi-continuous monitoring using sparse surface data.

The data integration with learned dictionaries is a sparse-representation-based approach to predicting missing values in an image (e.g., Selesnick, 2004; Elad et al., 2005; Zhang, 2006; Herrmann et al., 2008; Liu and Sacchi, 2004). The underlying principle used in this study is related to Elad et al. (2005) and Zhang (2006). Classic interpolation methods (such as polynomial-based approaches) are often not satisfactory on difficult cases. Nonlinear and adaptive approaches are expected to exhibit better performance. In our approach, we expect the signal (or image) to be sparse, that is, to be represented by few non-zero coefficients in the basis expansion. Then, an inversion with L_1-regularization can be solved to recover the missing values in the signal.

The use of sparsity and L_1-regularization for an inversion problem is closely related to compressed sensing (see, e.g., Donoho, 2006; Candès et al., 2006; Candès and Wakin, 2008; Lustig et al., 2007). In compressed sensing, we want to recover a sparse signal that is encoded by a “small” set of random projections (or observations). Because of the sparsity and randomness, the signal can be recovered with L_1-regularization, even when the observation data is highly incomplete.

Sparsity plays an important role in an L_1-regularized inversion problem. A signal exhibits different sparsity when using different dictionaries or basis functions. We need to select a proper sparse transform for a given signal. The wavelet transform and discrete cosine transform are examples of generic sparse representations. The use of overcomplete dictionaries may improve the sparsity and match more patterns in a signal (Mallat, 2008). An overcomplete dictionary is a set of redundant basis functions; namely, the number of basis functions is greater than dimensionality of the signal. There are a variety of algorithms for learning overcomplete dictionaries (e.g., Aharon et al., 2006; Lee et al., 2007). The sparse coding algorithms introduced by Lee et al. (2007) are used to train overcomplete dictionaries in this study.

Motivation
This study is motivated by the recovery of missing data in a crosswell seismic monitoring survey. Figure 1 shows the survey geometry. Crosswell seismic was used to monitor...
Image integration with learned dictionaries

CO2 EOR at McElroy Filed in West Texas (Harris et al., 1995). Baseline surveys were acquired in 1993 and post-injection surveys were collected in 1995. One problem in this project was that a large amount of post-injection data could not be acquired near the pay zone in Well 1068 and Well 1202 (Lazaratos and Marion, 1997). Figure 2 shows the P-wave traveltime data from the baseline survey (1993) and the time-lapse survey (1995). It was difficult to perform reliable time-lapse tomography between these two wells because the 1995 survey had very limited aperture. We wonder if we can recover part of the missing data, assuming only a small part of the data in the 1995 survey were affected by the CO2 flooding. We consider using the complete 1993 baseline data as training data to find a dictionary and then use it to estimate some of the missing data in the 1995 survey.

Method

Let y be a signal vector with a length of N. Assume that we have an N x K (usually K > N) matrix A that decomposes the signal y as

\[y = Ax. \]

where the vector x of length K consists of the expansion coefficients of a sparse representation of the signal. We hope x has the fewest non-zero elements as possible, so that y can be sufficiently represented by a small number of columns of A; namely, A is a sparse representation of y. The inverse discrete cosine transform (IDCT) is an example of the generic transforms commonly used for constructing the matrix A. For IDCT, the size of matrix A is N x N, and its elements can be expressed as

\[A_{ij} = \min\left(\sqrt{2}, \frac{\cos\left(\frac{(2i-1)(j-1)\pi}{2N}\right)}{\sqrt{N}}\right). \]

Suppose there are M missing data values in y. We rearrange data vector order as

\[y = \begin{pmatrix} y_a \\ y_m \end{pmatrix}, \]

where y_a is the available data vector (set of “observations”) with a length of N-M, and y_m is missing data vector with a length of M. Because each element in y corresponds to a row in matrix A, we also need rearrange the rows in matrix A. According to the ordering used in equation 2, we reorganize matrix A as

\[A = \begin{pmatrix} A_a \\ A_m \end{pmatrix}. \]

Here, A_a and A_m correspond to available data y_a and missing data y_m, respectively. Using equations 2 and 3, we rewrite equation 1 as

\[A_a x = y_a \]

\[A_m x = y_m. \]

We cannot make any use of equation 5, because y_m is unknown. However, if we are able to solve equation 4 for x, then we use the solution x* and equation 1 to recover the complete signal y as

\[y = A x*. \]

The number of equations (rows) in equation 4 is N-M, which is less than the number of unknowns K. The theory of compressed sensing (Donoho, 2006; Candès et al., 2006) provides an approach to solving this under-determined problem. To recover x, we consider solving an L_1-regularization problem

\[\min \|x\|_1 \quad \text{subject to} \quad A_a x = y_a. \]

Here, \|x\|_1 is L_1 norm defined as

© 2011 SEG
SEG San Antonio 2011 Annual Meeting
4218
Image integration with learned dictionaries

\[\| x \|_1 = \sum_i |x_i| . \]

The missing data recovery problem appears more difficult than the compressed sensing (CS) one, because the randomness required in CS is not guaranteed in the case of missing data recovery. Zhang (2006) had a brief theoretical discussion on the conditions for a successful recovery of missing data \(y_m \), and remarked that a proper selection of the matrix \(A \) (basis functions or dictionaries) is the most important issue related to the recovery conditions. Prior knowledge of the data is helpful for selecting a proper generic sparse transform. Figure 3 is a 1-D example to demonstrate this method using IDCT. There are two gaps with different lengths in the signal, which are the missing data \(y_m \) in equation 5; rest is the available data \(y_a \) in equation 4. The recovery is reasonable, though gap \(m_2 \) has a relatively large recovery error.

![Figure 3: (a) 1-D signal with two segments blocked out (\(m_1 \) and \(m_2 \)). \(L_1 \)-regularized inversion is used to recover the missing data. (b) Comparison of the recovered and known signals.](image)

In addition to generic sparse representations, we propose using learned dictionaries that may have better sparsity for certain types of data. Sparse coding provides a class of algorithms for finding overcomplete dictionaries that capture high-level features in the data. We use the sparse coding algorithms introduced by Lee et al. (2007) in this study. The goal of sparse coding is to represent an input signal \(y \) by a small number of basis functions in matrix \(D \) as

\[D x = y. \] (7)

Here, \(x \) is a vector of expansion coefficients. It is desired to have the fewest non-zero values as possible in \(x \). Matrix \(D \) has a dimension of \(N \times K \). The basis functions can be overcomplete \((K > N)\), so that more patterns in the data can be matched. The dictionary \(D \) in equation 7 is constructed by sparse coding using a large training data set \(Z \). Assuming the size of training data set is \(L \), then

\[Z = (y_1, ..., y_L), \]
\[S = (x_1, ..., x_L), \]

and equation 7 becomes

\[D S = Z. \] (8)

Sparse coding algorithms can be applied to find dictionary \(D \) by solving an optimization problem

\[\min \sum_i \left(\frac{1}{2} \| y_i - D x |_2^2 + \lambda \| x \|_1 \right), \]

where \(\lambda \) is a weighting factor. Details on learning dictionaries can be found in Lee et al. (2007), Aharon et al. (2006), and in the abundant literature on the subject.

Learned dictionary \(D \) is just a special case of the matrix \(A \) in equation 1. After having dictionary \(D \), we can use the same procedure as described in equations 2-6 for missing data recovery.

For the application to time-lapse monitoring, training data \(Z \) contains a collection of available time-lapse images. At reservoir-time (or slow-time) \(t(k) \), for example, we may use some or all data from \(y_{(k-1)}, y_{(k-2)}, ..., y_{(0)} \) as training data \(Z_{(k-1)} \) to find dictionary \(D_{(k-1)} \). Then the missing values in \(y_{(k)} \) can be recovered through

\[D_{(k-1)} x = y_{(k)}. \]

When new time-lapse images are available, we can adaptively train a new overcomplete dictionary and predict missing values in the current image.

Example

We present a time-lapse synthetic example to demonstrate and test the image integration with learned dictionaries. The field example described in the previous section (see Figures 1-2) is under processing.

We first created a reservoir model and ran flow simulations. After the flow simulations were completed, the resulting phase saturations and pressure data were converted to time-lapse seismic velocities and densities. Then the seismic models were used to compute synthetic seismic data. This simulation was done earlier as part of a CO2 sequestration project. The model parameters were taken from an unmineable coalbed. In this study we only used the time-lapse velocity models \((V_p^{(k)}), k=0,1,..,4 \) as images for integration tests.
Image integration with learned dictionaries

Figure 4 shows images selected at four different reservoir-times ($t(1),...,t(4)$). These images correspond to P-wave velocity changes ($\Delta V_p^{(i)} = V_p^{(i)} - V_p^{(0)}$) caused by CO$_2$ injection. At a given reservoir-time, we should use all available images to train a dictionary. In this example, we use baseline image $V_p^{(0)}$ and two time-lapse images $V_p^{(1)}$ and $V_p^{(2)}$ to train a dictionary, and apply the dictionary to recover the missing values in a later image, e.g., $V_p^{(3)}$. A basis function has the same dimension as the training image patch. For simplicity, we picked one row as the image patch in this study. Figure 5 is the learned dictionary that consists of 28 basis functions. Each row in $V_p^{(i)}$ can be approximately represented by a small number of these basis functions.

To test the approach, we cut a strip (missing data) from the velocity model $V_p^{(3)}$ (Figure 6). Then we use the learned dictionary and also the available data in $V_p^{(3)}$ to recover the missing part (Figure 7). Compared to the original image, the relative recovery error is less than 1%.

Figure 4: P-wave velocity changes (%) at four reservoir-times ($t(1),...,t(4)$). The CO$_2$ plume grows with time. A leak can be seen after $t(2)$.

Figure 5: Learned dictionary. Each row is a basis function.

Figure 6: Velocity image at T3. A strip is cut from the image as missing data.

Figure 7: Recovered image. Left is absolute velocity and right is velocity change. Relative recovery error is less than 1%.

It should be pointed out that the basis functions used in this example are just one-dimensional functions. This is reasonable for this particular example because the geologic structure is mostly flat. In general, we would need to use 2D image patches for the dictionaries. If we treat the reservoir-time as another dimension, 3-D image patches may be needed for the dictionaries.

Conclusions

Learned dictionaries are an alternative for sparse representations using predefined bases or dictionaries. They offer the potential for better sparseness than the generic representations. The improved sparsity and L_1-minimization can be used to advantage for missing data recovery. Time-lapse seismic involves multiple surveys. 4-D multiple seismic surveys, therefore, provide good training data for finding overcomplete dictionaries adaptively.
EDITED REFERENCES
Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2011 SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

Lee, H., A. Battle, R. Raina, and A. Ng, 2007, Efficient sparse coding algorithms: NIPS.
