Researchers in this area use geochemical tracers to reconstruct the thermal history of rocks; characterize ancient environments and climates; reveal the interactions between climate, soils, and carbon dioxide (CO2) levels; and decipher fluid-rock interactions and mestasomatism at high temperature, relationships between metamorphic processes and deformation, and volatile transport in subduction zones to aid in quantifying geochemical cycles.

Our major research areas & groups in geochemistry include:

Major & Trace Element Geochemistry
Stable Isotope Geochemistry
Radiogenic Isotope Geochemistry
Aqueous & Microbial Geochemistry
Gas Geochemistry
Organic Geochemistry
Thermo- & Geo-chronology

We offer numerous analytical services in isotopic geochemistry to customers outside the university. For a list of services and contacts, visit: Analytical Services in Isotope Geochemistry

Faculty & Research Scientists

Jay L BannerJay L Banner
Isotopic methods, groundwater, oceans, ancient oceans, climate change, aquifers, caves, environmental science, geochemistry, paleoclimatology
Jaime D BarnesJaime D Barnes
Stable isotope geochemistry, metamorphism and volatile transport in subduction zones, fluid-rock interaction and metasomatism, geochemical cycling, stable chlorine isotopes
Whitney  BehrWhitney Behr
Mechanics and kinematics of deformation in continental lithosphere, rheology of the crust and upper mantle, mechanisms of strain localization, experimental rock mechanics, tectonic geomorphology and long term slip rates on large-scale strike-slip faults.
Philip C BennettPhilip C Bennett
Aqueous geochemistry, geomicrobiology, environmental and microbial geochemistry, hydrogeology
Daniel O BreeckerDaniel O Breecker
Soil biogeochemistry, calcic soils, stable isotope geochemistry
William D CarlsonWilliam D Carlson
Field, analytical, and experimental studies of metamorphic petrogenesis, with emphasis on the rates and mechanisms of metamorphic reactions. Geological applications of high-resolution X-ray computed tomography. Analytical and computational studies of intracrystalline and intergranular diffusion.
Elizabeth J CatlosElizabeth J Catlos
The geological evolution of the Turkey (various regions), Himalayas (India and Nepal), south India (Tamil Nadu), and Slovakia (Carpathians); models for heat, mass, and fluid flow along tectonic structures; developing techniques for isotopic microanalysis; applying mineral equilibria to estimate environmental conditions during dynamic recrystallization; accessory mineral geochronology; stone decay and deformation mechanisms. Overall, I am interested in developing and applying petrochemical and geochemical techniques to the study of lithosphere dynamics.
Bruce L CutrightBruce L Cutright
Ian J DuncanIan J Duncan
Expertise in geomechanic and geochemistry applied to: risks associated with CO2 sequestration; hydraulic fracturing for shale gas production; environmental impact of hydraulic fracturing; and the water-energy nexus. Current research focuses on the scientific, environmental and public policy aspects of unconventional natural gas production, the water-energy nexus, and carbon capture and storage. He has a particular interest in risk analysis, decision making, and legal/regulatory issues related to fracing, CO2 sequestration, CO2-EOR, and energy production.
Peter  EichhublPeter Eichhubl
Fault and fracture mechanics, diagenesis and low-temp. geochemistry, fluid flow and transfer processes in sedimentary basins, deformation mechanisms of the upper crust, structural control of mass and heat transfer in sedimentary basins, effects of chemical mass transfer on the mechanical and hydraulic behavior of fractures and faults, chemical interaction between fluids and minerals
Brent Elliott
Andras  FallAndras Fall
Fluids in diagenetic and hydrothermal systems, Fluid inclusion techniques, Fracture analysis, Structural diagenesis, Unconventional hydrocarbon reservoirs, Raman spectroscopy
James E GardnerJames E Gardner
Volcanology, volcanic eruption processes, magmatic processes, experimental petrology, volatiles in magmas, degassing of volatiles from magmas, control of degassing behavior on volcanic eruptions and formation of ore bodies
Eric W JamesEric W James
Isotope geochemistry, igneous petrology, analytical chemistry
Richard A KetchamRichard A Ketcham
High-resolution X-ray computed tomography, CT scanning, 3D image analysis, fission-track dating, thermochronology, structural geology, tectonics, digital morphology, trabecular bone
Alison M Koleszar
J. Richard KyleJ. Richard Kyle
Ore deposits geology, strata-controlled mineral resources, metals & industrial minerals exploration, ore petrology, characterization of ore-forming fluids, high resolution X-ray computed tomography applications to ore genesis & processing, geology of energy critical elements, resources & society, geology & mineral resources of Texas
Toti E LarsonToti E Larson
Dr. Larson is a stable isotope geochemist specializing in novel methods of light isotope measurement that include silicate laser fluorination, compound-specific carbon isotope measurement, and gas chromatography. His current research focuses on developing tracers to probe shallow (vadose zone) and deeper CO2 sequestration and unconventional reservoirs. He integrates experimental flow through column experiments with diffusion-advection modeling to understanding the behavior of tracer compounds in a variety of substrates. He also couples light isotope fractionation with ...
John C LassiterJohn C Lassiter
Earth's origin and evolution, isotope and trace element geochemistry, the role of crust and lithospheric mantle recycling in the generation of mantle chemical heterogeneity, the origin and distribution of water and other volatile elements in the Earth's interior, and the thermal and chemical evolution of the Earth's core and core/mantle boundary
Staci L LoewyStaci L Loewy
Jiemin  LuJiemin Lu
Diagenesis; CO2-rock-water geochemistry; stable isotopes; geology, geochemistry, and basin modeling related to CO2 geological storage.
Nathaniel R MillerNathaniel R Miller
Sedimentary geochemistry, isotope geochemistry, Earth system evolution, Q-ICP-MS, microanalytics, GIS, Neoproterozoic climate
Jean-Philippe NicotJean-Philippe Nicot
Subsurface hydrology, numerical modeling and optimization of groundwater resources, multiphase flow and contaminant transport in both the unsaturated and saturated zones, geochemistry modeling and subsurface reactive transport, Mathematical geology, geostatistics, inverse modeling, optimization, risk assessment and risk analysis
Hilary C OlsonHilary C Olson
Biostratigraphic and paleoenvironmental analysis of foraminifera
Christopher R OmelonChristopher R Omelon
Bacteria-mineral interactions; microbial biosignatures; polar and desert environments; cyanobacteria; electron microscopy; synchrotron radiation.
Terrence M QuinnTerrence M Quinn
Paleoclimate, paleoclimatology, paleoceanography, sedimentary geology and geochemistry
Katherine D RomanakKatherine D Romanak
Geochemistry and isotope systematics of carbon cycling in the vadose zone and in freshwater aquifers; soil-gas monitoring and surface gas flux measurements at CO2 sequestration sites; microbial influences on carbon geochemistry in the shallow subsurface; fate and transport of organic contaminants.
Harry Rowe
Timothy M ShanahanTimothy M Shanahan
Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific stable isotope analysis
Douglas  SmithDouglas Smith
Research on mantle evolution using tools of mineralogy, petrology, and geochemistry.
Daniel  StockliDaniel Stockli
Thermo-/Geochronology, Tectonics and Structural Geology, Isotopic Provenance Analysis, Archeometry, Geothermal Exploration, and Thermal Maturation
Donggao  ZhaoDonggao Zhao
Electron microbeam and X-ray techniques, mantle mineralogy and petrology, environmental mineralogy, nuclear waste management, and materials science.

Postdoctoral Researchers

Owen A Anfinson
Specializes in the use of heavy mineral geochronology and thermochronology to understand the geologic evolution of sedimentary basins and their source regions. Past Research Topics Include: Ph.D.- New Insights into Arctic Tectonics: U-Pb, (U-Th)/He, and Hf Isotopic data from the Franklinian Basin, Canadian Arctic Islands; M.S.- Sediment Sources for Catastrophic Glacial Outburst Flood Rhythmites and Quaternary Eolian Deposits at the Hanford Reach National Monument, Washington; B.A.- Stratigraphy and ...
George B FisherGeorge B Fisher
Tectonic and Fluvial Geomorphology, Cosmogenic and Fallout Radionuclides, Remote Sensing, Spatial Analyses
Akand W Islam
Fluid Phase Equilibria (PVT); Petroleum Reservoir Simulation/Engineering; Low salinity CO2- and Water- flooding, EOR; Data Assimilation, Pressure and geochemical responses in CO2 injection; Petrophysics, specially of unconventional gas reservoirs; Carbon storage and sequestration; Geothermal Energy; Applied mathematics
Shannon E LoomisShannon E Loomis
Paleoclimate, biogeochemistry, sedimentary geology
Ryan McKenzieRyan McKenzie
I am broadly interested in Earth surface system evolution, thus my research focuses on sedimentary geology, geochemistry, and paleontology. My field-based projects utilize integrative methods that include detrital zircon geochronology and provenance, carbonate isotope geochemistry, paleontology and biostratigraphy.
Andrew J SmyeAndrew J Smye
Radiogenic isotope systematics of metamorphic rocks; U-Th-Pb geochronology; 40Ar/39Ar thermochronology; Thermal models of crustal evolution; Metamorphic petrology; Phase equilibria calculations; Exhumation mechanisms; Subduction-related devolatisation; Fluid--mineral/rock interaction

Research Staff

Graduate Students

Kate Atakturk
Understanding metamorphic core complexes in western Turkey through petrological, geochemical, and geochronologic work. Focus on metamorphic petrology and studying garnets to identify the pressure, temperature, and crystallization timing recorded by metamorphic rocks. Using data to construct structural interpretation of the region's formation.
Benjamin L ByerlyBenjamin L Byerly
I use the major element, trace element, and isotopic (Sr-Nd-Pb-Hf-Os) chemistry of abyssal peridotites and mantle xenoliths to understand the evolution of the lithospheric and asthenospheric mantle.
Owen A CallahanOwen A Callahan
My research is focussed on the interplay between fault and fracture permeability, hydrothermal fluid flow, alteration, mechanical properties, and deformation. I am currently working on projects in Dixie Valley, NV, and in the North Cascades, WA. I worked as a geologist in the geothermal industry for 5 years before returning to graduate school.
Tomas N CapaldiTomas N Capaldi
I am a first year PhD student, focusing on Cenozoic to modern tectonic evolution of the dissected Bermejo foreland basin in western Argentina. My research involves clastic sedimentology and stratigraphy, provenance and geochronology, low-temperature thermochronology, and petrography. By applying these various techniques I will better understand the style and timing of upper-crustal deformation associated with ongoing Pampean flat slap subduction.
Michael Cloos
Sarah George
Sarah is a first year masterís student focused on the interplay between regional tectonics and sedimentation. Specifically, she is working on elucidating the timing and mechanisms of shortening, exhumation, and basin evolution in the Andes of northern Peru. Methods include field work, U-Pb geochronology and (U-Th)/He thermochronology.
Adam S Goldsmith
Understanding the role of radiation damage on helium diffusion kinetics in zircon through the characterization of alpha-radiation damage by Raman spectroscopy a la Nasdala, et al 1995,2001,2004.
Nicole HartNicole Hart
Modern thermochronometric dating techniques have become increasingly powerful tools with a diverse range of applications in quantifying tectonic and sedimentary processes at rifted continental margins. While detrital zircon U-Pb is commonly used in detrital provenance studies, zircon (U-Th)/He (ZHe) dating has been shown to be a complimentary tool that not only constrains sediment provenance, but also the exhumation history of a sediment source region(s). In particular, analysis of ZHe lag time - time ...
Christopher K Hendrix
Emily Hernandez GoldsteinEmily Hernandez Goldstein
I am currently pursuing my PhD under the supervision of Daniel Stockli. My research combines geochemistry, mineralogy and plate tectonics to better understand how minerals form, water-rock interactions, and the thermal and temporal evolution of ocean-continent transitions. I am developing a method that uses magnetite to date serpentinites in order to better understand how continents break up to form oceans. My research interests broadly involve novel geo/thermochronology techniques with applications to tectonics.
Lily  JacksonLily Jackson
My current research focuses on determining timing and magnitude of major paleo-elevation changes affecting the Peruvian Andes. My current methods include detrital zircon geochronology, hydrogen stable isotope paleoaltimetery with volcanic glasses, and traditional methods in sedimentology.
Jacob S Jordan
Kory L Kirchner
Chelsea Mackaman-Lofland
My research focuses on the structural and tectonic evolution of the Argentine Andes. I will be using a combination of structural analysis and thermochronometry to provide modern age constraints for deformation and exhumation events in the Frontal and Pre-Cordillera. Ultimately, this work seeks to relate observed crustal shortening and related age constraints to the structures observed at depth (significantly, at the transition from normal to flat-slab subduction) in order to better characterize the mechanisms that ...
Alison MacnameeAlison Macnamee
My research focuses on the evolution of geothermal systems, extensional tectonics, and integrated applications of thermochronometry. I study the relationship between geothermal fluid flow and the structural settings that host these systems. In doing so I employ a range of thermochronometers including apatite and zircon (U-Th)/He and 4He/3He techniques to elucidate the thermal and tectonic evolution of extensional provinces, and to record thermal events associated with fluid flow. By testing the sensitivity of ...
Adam D MarshAdam D Marsh
Anatomy and evolutionary history of early saurischian dinosaurs. Stratigraphy and geochronology of the Glen Canyon Group of the Colorado Plateau.
Edward W Marshall
My current research project looks at mantle hydration and metastomatism underneath the Colorado Plateau. My research will look into the timing and circumstances of the alteration as well as the rheologic implications on the stable Colorado Plateau. Prior research has been in the petrology and geochemistry of the Allsaw Anorthosite in the Ontario Grenville province, oxygen fugacity of the upper zone of the Bushveld Complex and the serpentinites of the Philadelphia area.
Sean M SanguinitoSean M Sanguinito
My research is focused on using low temperature thermochronometers such as apatite fission track, and apatite and zircon (U-Th/He) to explore unroofing styles of metamorphic core complexes. Specifically I am attempting to determine if displacement during the evolution of unroofing changes from low angle detachment faulting to high angle normal faults. My two field areas are the Harcuvar Mountains in western Arizona and the Santa Catalina-Rincon Mountains in southeastern Arizona.
Kiran SathayeKiran Sathaye
I am a PhD candidate studying the Bravo Dome carbon dioxide reservoir near the Texas-Oklahoma-New Mexico border. My work involves incorporation of stable and radioactive isotope geochemistry, reservoir engineering and multiphase flow, and petrophysics and geostatistics. I am interested in incorporation of data and models from these varying disciplines to better understand subsurface fluid flow.
Natasha Sekhon
Paleoclimatology & Isotopic Geochemistry
Nikki M SeymourNikki M Seymour
I am a field geologist whose particular interests are structural geology and tectonics. My research uses geo- and thermochronology to understand the timing and thermal structure of continental rifting at magma-poor margins to answer an outstanding question in plate tectonics -- How do you break a continent?
John M Swartz
Murat  TamerMurat Tamer
Fission Track Dating Method
Kaustubh ThirumalaiKaustubh Thirumalai
Research interests: Paleoclimate/Paleoceanography, Paleogeodesy, Foraminifera, Corals, Proxy Uncertainty My research involves the reconstruction of oceanographic parameters such as sea-surface temperature and salinity over the Holocene utilizing planktic foraminifera in marine sediment cores. Comprehensive observations of climatic fluctuations in the ocean and atmosphere have only been measured (with varying degrees of quality) for the last ~150 years, a mere geological instant. In order to understand the variability of climate over large timescales, driven by various forcing ...
Dolores A Van Der KolkDolores A Van Der Kolk
My research focuses on marine environments and marine-continental transitions preserved within siliciclastic depositional systems. I extract clues from the sedimentary rock record in order to understand how paleoenvironments and paleoclimates evolved through time. For example, I am currently exploring how a greenhouse (warm) climate is reflected in the sedimentary rock record in both high- and mid-latitude environments. I utilize both field-based and subsurface data and apply various sedimentologic, stratigraphic, biostratigraphic, geochronologic and geochemical methods in ...
Corinne  WongCorinne Wong
University of California Presidential Postdoctoral Fellow (2013-current) Dept. of Earth and Planetary Sciences University of California Davis Assistant Professor (starting Jan 2015) Dept. of Earth and Environmental Science Boston College I use environmental isotopes to investigate processes controlling modern hydrologic systems and reconstruct past climate from speleothems. I am currently working on a model-data comparison of the response of rainfall over the western US to past warm and cool intervals. For additional detail, please visit my ...

General Theory

GEO 376C/388L Isotope Geology (taught each Fall by Ketcham & Barnes)
Survey of stable and radiogenic isotopes and their use. This broad course can either be a full introduction to the subject for students whose research will overlap with geochemistry but will not be specializing in it, or a springboard for further study.
GEO 390M Thermodynamics of Geologic Processes(Taught every other fall (even years) by Carlson)
Introduction to general thermodynamics, with emphasis on geochemical aspects.


GEO 390S Analytical Methods: Mass Spectrometry (taught each Spring by Miller & Loewy)
Survey course of 5 mass spec techniques (TIMS, ICP-MS, LA-ICP-MS, MC-ICP-MS, IRMS), and their applications.
GEO 391 Fundamentals and Applications of ICP-MS (taught each Fall by Miller)
Fundamentals of ICP-MS, applications and capabilites; hands-on (50-50 lecture/lab).
GEO 390R Analytical Methods: Electron-Microbeam Techniques (taught each Fall by Zhao)
Microprobe course, plus additional e-beam techniques such as SEM and XRD.


GEO 391 Geochronology (taught each Spring by Stockli)
Geochronology and applications.
GEO 391 Thermochronology (taught Fall by Stockli & Ketcham)
Thermochronology and applications.
GEO 388R Advanced Thermochronology (taught every other Spring (even years) by Stockli & Ketcham)
Current topics in thermochronology, and computational modeling.
GEO 376E/388H Environmental Isotope Geochemistry (taught every other Spring by Breeker)
Theory of stable isotope fractionation and radiogenic isotope systematics, applied to problems in low-T geochemistry.
GEO 371C/388G Global Biogeochemical Cycles (taught Fall (failed to meet previous 2 years) by Shanahan)
Chemistry of surface of Earth, focusing on biochemical processes and interactions with the global climate system.
GEO 391 Paleoclimate (taught by Shanahan)
Introduce grad students to field of paleoclimatology, using geologic archives from ocean, land, and cryosphere.
GEO 387C/476M Chemical Hydrogeology (taught Spring by Bennett)
Chemistry of water in the subsurface. Topics include basic thermodynamics and kinetics of rock-water interaction, acid-base theory, redox, and coordination chemistry.
GEO 386K Igneous Petrology (taught every other Spring by Gardner)
Geochemistry of magmas, geochemical and thermodynamic modelling, MELTS.
GEO 386K Metamorphic Petrology (taught every other Spring (odd years) by Carlson)
Survey course in metamorphic petrology.
GEO 391 Meteoritics/Early Solar System Processes (taught every other Fall by Lassiter)
Survey course in metamorphic petrology.
GEO 376T/388T High-Temperature Geochemistry (taught every other Fall by Lassiter)
Isotope and trace element geochemistry. Emphasis on origin and evolution of Earth interior.
GEO 386E Economic Geology (taught every other year (next F13) by Kyle)
Overview of the geologic controls for the formation of and economic constraints affecting non-fuel mineral resources.
GEO 381R Regional Studies in Mineral Resources Geology (taught every spring, per demand (next S14), taught by Kyle)
Integrated study of a major geologic province, in the context of mineral resources; international field trip course.

Suggested Course Sequences

Graduate and undergraduate research in geologic sequestration of CO2 (Graduate or Undergraduate)
Gulf Coast Carbon Center supports a team of students and post docs working in geologic sequestration (deep subsurface long-duration storage) of the major greenhouse gas CO2, as a method to reduce release to the atmosphere. Student projects are wide ranging, from sedimentology to policy, linked in that they are 1) multidisciplinary and 2) applied to current issues. Students are typically jointly supervised by faculty in geology or petroleum geosystems engineering and staff at the GCCC. A class in geologic sequestration is offered in the fall some years.
Posted by: Susan Hovorka

Innovative Detrital Provenance Studies - Double Dating PLUS (Graduate)
A major thrust of my current research the development and application of more comprehensive isotopic detrital provenance tools. U-Pb on zircon is clearly the big work horse, but only goes so far and sometimes yields "no" useful info, e.g., if the source of the sediment is mostly recycled sediment. We have extensively pursued double dating of zircons by U-Pb and He, as zircon He ages yield very interesting insights into the thermal and tectonic history of the source terrane; often yielding very different insights than crystallization ages. The combination is powerful, but I think we can take things so much farther by combining double dating with other constrains. People have tried fission track (not precise enough), Hf/Hf (to get mantle separation model ages), etc., but what we want to do and are working on is really Double Dating ++, combining zircon U-Pb-He dating with a variety of other geochemical aspects to more comprehensive understand detrital provenance and improve paleo-tectonic reconstructions. For example, trace-element thermometry (Ti in zirc), REE on zircon (met vs mag origin), Hf/Hf (see above), oxygen isotopes, etc. and also to develop rutile in an analogous manner (e.g., Zr in rut thermometry, Cr/Nb ratio (mafic vs granulitic), REE, etc.). The sky is the limit and what can learn so much. The issue in part it, how much can a single grain tell us before it's gone? The project sounds very laboratory oriented, but it's really a combination of field and lab work. We have identified a few possible case study areas, e.g., Morocco; great exposures, long-lived and preserved record of basin deposition since the Precambrian. My group is already working on some case studies in NE Africa (Egypt), Sevier FTB and foreland basin, and the Colombian Llanos and Magdalena Basins.
Posted by: Daniel Stockli

Exhumation of the Central Alps, Switzerland (Graduate)
Being Swiss, I have had a long-standing interest in the Alps and over the past few yearsI have had two students working on the exhumation of the eastern Alps (Engadin) and the Molasse foreland basin. Over the past decade different models have explored the role of climate (incl. Messinian salinity crisis) vs tectonics (out-of-sequence thrusting etc.). The exhumation of the northern Alpine external massives (esp. central Aar Massif) in Switzerland is key in solving this problem. We have a detailed study in the western Aar Massif and it has really questioned a lot of the thinking in terms of the late-stage structural and tectonic reconstruction of the Alps and the evolution of the Alpine critical taper. This is also a project a lot of people would be very interested in in terms of the results. I have collected some samples, but a lot more work needs to be done in the field and the laboratory. Some of the sampling might require good fitness etc. or more. In addition to surface sampling, there are also a lot of tunnels and the potential of 3D modeling to really understand and solve this problem.
Posted by: Daniel Stockli

Fault and fracture processes, structural diagenesis (Graduate)
Graduate student projects combine the fields of fault and fracture mechanics and low-temperature geochemistry addressing deformation mechanisms of the upper crust, structural control of mass and heat transfer in sedimentary basins, the effects of chemical mass transfer on the mechanical and hydraulic behavior of fractures and faults, and the chemical interaction between fluids and minerals. Projects usually require the integration of field and laboratory analytical or numerical work and preference goes to applicants that are equally comfortable in the field and in the lab. Research topics include field- and core-based structural geology, geomechanics, geofluids, geochemistry, and natural resources including CO2 sequestration. A current research emphasis lies in Structural Diagenesis which combines the traditionally separate fields of brittle structural geology and diagenesis/geochemistry. Preference goes to PhD applicants with a prior MS degree and MS applicants with undergraduate research experience, preferentially through completion of a senior's thesis. Applications for Fall 2014 should be submitted to the MS or PhD program in Geological Sciences (GEO). Please contact Peter Eichhubl ( for further details.
Posted by: Peter Eichhubl

Granitic rocks from the Biga Peninsula of western Turkey (Graduate or Undergraduate)
This project involves a field, geochemical and geochronological study of a number of granite plutons located in the Biga Peninsula of western Turkey. The objective is to decipher their tectonomagmatic histories to understand large-scale dynamics of extension in the back-arc of the northern Aegean. Back-arc basins are major components of numerous subduction zones around the world and deciphering the processes occurring in the Aegean back-arc region allows us to evaluate the role of the subducting slab, a prior tectonic history, strike-slip dynamics, and magma migration in the development of these key plate tectonic features. The Aegean is atypical of back-arc basins in general, and a number of processes complicate its geology, including the closure of branches of Tethyan oceans and strike-slip deformation. How the geology of the Biga Peninsula links to that of Greece and Bulgaria is also debated. Data generated in this project will be used to evaluate models for Aegean extension and to understand how the geology of the Biga Peninsula relates to that elsewhere in the region. Elements that are fundamental to models for Aegean extension are located in the field area, including Tethyan sutures, extensional structures, and active strands of the North Anatolian Shear Zone. With Dr. Tolga Oyman (Dokuz Eylul University)
Posted by: Elizabeth Catlos

Geochronology of the Ordovician (Graduate or Undergraduate)
The Ordovician time scale is bracketed by major extinction events, including one that is the 2nd largest in Earth's history. The goal of this project is to date zircon grains collected from bentonite (clay-rich) samples from Ordovician exposures from a range of locations (Canada, US, Scandinavia) to further understand the late Ordovician Hirnantian Ice Age and the big end Ordovician extinction. The project would involve analysis of sedimentary and volcanic rocks, petrology, geochemistry, zircon geochronology, and tectonic interpretations. With Dr. Michael Brookfield (Univ. Mass Boston)
Posted by: Elizabeth Catlos

Nature, age, and emplacement of ophiolite complexes in NW India (Graduate or Undergraduate)
During the mid-Mesozoic to Eocene, the Indian subcontinent moved over 60 degrees latitude north towards Asia, closing the ancient Neo-Tethyan Ocean. This ocean plays a central role in reconstructing a number of orogenic systems extending from Europe to Asia, but debated issues remain because exposures of the former ocean and its sub-basins are affected by plate collision, arc and terrane accretion, and later deformation. The goal of this project is to date and geochemical analyze an isolated basic-ultrabasic massif that overlies shelf limestones of the northern Indian passive margin in NW India. The ophiolite body currently has no comprehensive published geochemical studies which would allow comparison with other complexes across the Himalayan range and its ages have large errors. The project involves geochronology of metamorphosed mafic igneous rocks, petrology, and tectonic interpretations. With Profs. M. Brookfield (Univ. Mass Boston) and G.M. Bhatt (Univ. Jammu).
Posted by: Elizabeth Catlos

International Research Experiences for Students (IRES): Closing Oceans: Assessing the Dynamics of Turkish suture zones (Graduate or Undergraduate)
I currently have a proposal in review with the National Science Foundation that requests funds to provide 4 weeks of geological field-based research and training experiences across Turkey for undergraduate and graduate students. They will conduct research within a multidisciplinary, regional framework focusing on investigating arc accretion processes that occurred in Turkey during the closure of branches of ancient ocean basins. Because of its Tethyan suture zones and fragments, Turkey is an ideal location to develop models for accretionary orogenesis and how continents grow. Students will partner with Turkish researchers to explore a multidisciplinary range of geological concepts discussed in their courses while making a significant impact on our understanding of processes related to the formation of continental crust. Students will visit field areas across Turkey to develop a regional-scale perspective. All IRES students will undego an intense pre- and post-departure program developed with the assistance of Turkish colleagues and numerous UT Austin resources. If funded, recruitment will begin in Fall 2015. The recruitment plan is geared towards attracting members of underrepresented groups and all IRES student participants will be US citizens or permanent residents, as required by the program solicitation. We target high-achieving graduate students and sophomore level undergraduates or internal transfers majoring in geology because others at higher levels will likely have time constraints on their summers due to degree-required field camp. Consideration will also be made for students attending other geoscience departments in Texas outside the Jackson School. With Drs. Rich Kyle and Brent Elliott (Jackson School); Tolga Oyman (Dokuz Eylul University, Dept. Geological Engineering), Bora Rojay (Middle East Technical University, METU Dept. of Geological Engineering) and Sebnem Duzgun (METU Dept. of Mining Engineering), and Aykut Akgun (Karadeniz Technical University, Dept. Geological Engineering).
Posted by: Elizabeth Catlos

(U-Th)/He Geo- and Thermochronometry Lab(U-Th)/He Geo- and Thermochronometry Lab
The UT (U-Th)/He Geo- and Thermochronometry Laboratory is a state-of-the art facility for the development of (U-Th) dating and its applications to tectonics, petrology, volcanology, stratigraphy, geomorphology, and geoarcheology. The facility houses: (1) 3 fully-automated UHV He extraction lines with 2 diode lasers, 1 Nd:YAG lasers, cryogenic purification systmes, quadrupole mass-specs, and step-heating apparati for diffusion measurements, (2) a Helix SFT magnetic sector noble gas mass-spectrometer with automated UHV gas extraction system with diode and excimer laser, (3) two Element2 HR-ICP-MS instruments for solution and laser ablation analysis for thermo- and geochronometery, as well as a dedicated clean room and sample preparation laboratories.
Analytical Geochemistry Lab
Analytical Lab for Paleoclimate StudiesAnalytical Lab for Paleoclimate Studies
The Jackson School of Geosciences now has four stable isotope laboratories. UTIG Director and DGS faculty member Terry Quinn supervises one of these labs: ALPS. The ALPS houses two, state-of-the-science, Thermo isotope ratio mass spectrometers and an Inductively Coupled Plasma-spectrometer (ICP).
Aqueous Geochemistry Lab
Characterizes the chemical properties of water and solids to support research in hydrogeology, geochemistry, and geomicrobiology. Equipment used: carbon analyzer (TC), Organic analysis Field and laboratory gas chromatographs, thermal desorber, high pressure liquid chromatographs, Inorganic analyses Ion chromatograph, autotitrator, field and lab spectrophotometers. BET sorptometer for N2, Ar, and Kr BET surface areas, and A microporosities, organic carbon analyzer.
Electron MicroprobeElectron Microprobe
Installed in 2002-2003, the JEOL JXA-8200 electron probe microanalyzer (EPMA) is equipped with five wavelength dispersive spectrometers (WDS), an energy dispersive detector (EDS), and two image detectors in secondary and backscattered electron modes. The primary aim of the microprobe is quantitative elemental analysis of minerals on a microscale with high precision (less than a percent relative for major constituents) and low detection limits (commonly a few tens to few hundreds ppm)
Fission Track Thermochronology LaboratoryFission Track Thermochronology Laboratory
Enables analysis of fission tracks in apatite and zircon to constrain the low-temperature time-temperature (t-T) history of sedimentary, igneous, and metamorphic rocks.
Fluid Inclusion Lab (BEG)Fluid Inclusion Lab (BEG)
Principal equipment includes: an Olympus BX 51 optical microscope, fitted for use with transmitted, reflected and UV light; a FLUID, Inc.-adapted USGS-type gas flow heating/cooling stage; a Linkam THMSG 600 degree C programmable heating/cooling stage; and a digital camera. The lab is fully equipped with sample preparatory facilities for preparation of doubly-polished thin and thick sections. The lab will soon incorporate an experimental hydrothermal lab component that will include 6 externally-heated cold-seal pressure vessels (up to 800įC, up to 700 MPa) used for the preparation of synthetic fluid inclusions and for quartz cement growth experiments.
Fluid Inclusion Lab (DGS)Fluid Inclusion Lab (DGS)
The fluid inclusion laboratory is based around a modified USGS-type gas-flow heating/freezing stage capable of microthermometry of fluid inclusions over a range of 700° to -180°C. The stage is mounted on an Olympus BX51 microscope with a 40X long-working distance objective, 2X image magnifier, and digital camera for image capture. The microscope also has capability for UV fluorescence petrography. Complementary facilities are available for reflected and transmitted light petrography and image capture.
Gas Chromatography Mass Spectrometry Laboratory
Gas Geochemistry Lab
This lab provides the following geochemical analysis capabilities: 1) Wasson-ECE Agilent 7890A gas chromatograph for gas compositional analysis of natural gas, soil gas, dissolved gas, and rock crushed gas; 2) Shimadzu QP2010S GCMS for liquid hydrocarbon compositional analysis of oil, solvent extracts, soil contaminants; 3) TharSFC H/PT apparatus Gas solubility measurement under high temperature and pressure conditions; 4) A high temperature and pressure gas adsorption system for gas adsorption isotherm analyses; 5) SA 3100 Surface Area Analyzer for surface area and pore size distribution analysis in porous rocks and mediums; 6) Foss Soxlet 2403 automatic extraction system for hydrocarbon extraction from soils, oil-bearing source rocks, and sandstones and carbonates; and 7) DIONEX ICS-1100 ion chromatography system for ion concentration analysis of brines.
High Temp. Stable Isotope LabHigh Temp. Stable Isotope Lab
This newly renovated lab is overseen by Jaime Barnes and houses a ThermoElectron MAT 253 with associated peripheral devices and instrumentation (TC/EA, GasBench II, Conflo IV, online silicate laser extraction line, general purpose vacuum extraction lines, Cl purification line). Instrumentation permits measurements of the stable H, C, N, O, S, and Cl isotope ratios of silicate, phosphate, and carbonate minerals, volcanic gases, air, and waters
HPLC Mass Spectromtery Laboratory
HR-ICP Mass Spectrometers
Equipment available: Thermo Element2 HR-ICP-MS with ESI autosampler system for solutions; and Thermo Element2 HR-ICP-MS with Photonmachines Analyte G2 Excimer laser ablation system.
Infrared (FTIR) SpectroscopyInfrared (FTIR) Spectroscopy
This lab uses Fourier-Transform Infrared (FTIR) analyses to measure dissolved water and carbon in natural and experimental silicate glasses. The lab is equipped with a Thermo Electron Nicolet 6700 FTIR spectrometer and Continuum IR microscope, equipped with automated x-y-z stage and stage purge system so that the spectrometer, microscope, and sample position are all purged with dry air that has <10 ppm CO2 for very precise measurements of CO2 poor glasses. Dedicated polishing facilities are also available for sample preparation.
Isoprobe ICP Mass Spectrometer
The IsoProbe MC-ICP-MS is a multicollector, magnetic-sector inductively coupled plasma mass spectrometer featuring a hexapole collision cell immediately behind the interface region of the ICP, and the multicollector contains nine Faraday collectors, three channeltron ion-counting detectors for low-level signals (ion currents below 10-16 amp), and an axial Daly detector located behind a wide aperature retarding potential filter for high abundance sensitivity on the Daly detector. The IsoProbe mass spectrometer is capable of making isotope ratio measurements in a large number of systems, including Ca, Fe, Cu, Se, Rb-Sr, Sm-Nd, Lu-Hf, Re, common Pb, Th-U series isotopes, and in situ laser ablation measurements of Sr, common Pb, Lu-Hf, and U-Pb.
Isotope Clean Lab (Banner)
The Isotope Clean Lab is a 600 square foot clean chemistry lab with seven Class-100 workspaces for preparation of rock, mineral, soil, plant and water samples for chemical and isotopic analysis under low-contamination conditions.
Isotope Clean Lab (Lassiter)Isotope Clean Lab (Lassiter)
Within the Department of Geological Sciences there are three clean-room laboratories supplied with HEPA-filtered class 100 air where sample preparation and ion-exchange chromatography for isotopic analysis may be done under ultra-clean conditions, making possible very low analytical blanks (e.g., < 1 pg Pb for U-Pb geochronology, and <10 pg Sr). There are also two other laboratories with HEPA-filtered work stations where sample preparation and ion-exchange chromatography are performed. These labs are affiliated with the Mineral Separation Facility (see description).
Mineral Separation Facility
Includes shatterboxes for sample pulverization, a crusher, a disc mill pulverizer, a Rogers table, a Wilfly table, a mica table, sieves, heavy liquids and Franz magnetic separators for mineral separation.
Paleoclimatology and Environmental Geochemistry Laboratory
Major instrumentation includes: (1) Gas chromatograph-single quadrupole mass spectrometer (GC-IRMS) for quantification and identification of organic compounds, and (2) HPLC-signgle quadrupole mass spectrometer (HPLC-MS) equipped with intelligent fraction collection for identification, quantification and isolation of high molecular weight compounds.
Paleolimnology Laboratory
Quadrupole ICP Mass Spectrometer
The Quadrupole ICP-MS laboratory (with laser ablation) is used for elemental determinations in a wide range of liquid (e.g., natural waters, dissolved sediments/rocks, digested biomass) and solid (e.g., rocks, minerals, glasses) samples. The ICP-MS instrument is an Agilent 7500ce, capable of measuring trace element concentrations in solution over a nine-order linear dynamic range, from ppt to 100s of ppm. Sample introduction systems include a Micromist concentric nebulizer with a Peltier-cooled spray chamber for aspirating solutions, and a New-Wave UP¨193-FX 193 nm excimer laser ablation system for micro-sampling of solids. Sub-ppm detection limits are obtained routinely by laser ablation. The Agilent 7500ce is equipped with a collision/reaction cell, allowing for quantification of environmentally important matrix/plasma-sensitive elements such as As, Se, and Fe. The instrument is housed in a positive-pressure HEPA-filtered laboratory equipped with a weighing station, laminar flow bench, and Type 1 (18.2 M?) ultrapure water station.
Radioisotope Counting Lab
This laboratory contains gamma and alpha spectrometers for measuring radioistope activities in sediment and water samples.
Scanning Electron Microscope Lab (BEG)Scanning Electron Microscope Lab (BEG)
The Bureau houses two SEMs devoted primarily to research on unconventional reservoirs under projects supported by industry consortia (FRAC, MSRL, RCRL) and by government-sponsored programs (STARR, GCCC). One is a conventional SEM devoted to wide-area mosaic mapping for the study of microscale fracture populations in tight formations. The other is a high-resolution instrument largely devoted to the study of gas shales.
Stable Isotope Lab for Critical Zone Gases
This lab is designed for the study of caves, soils and vegetative canopies. The GasBench II and Thermo Electron 253 in the High Temp. Stable Isotope lab are currently being used to measure the carbon isotope composition of soil and cave CO2, CO2 respired in soil respiration experiments, and dissolved inorganic carbon and calcium carbonates from multiple environments.
Thermal Ionization Mass Spectrometry (TIMS) LabThermal Ionization Mass Spectrometry (TIMS) Lab
Measures the isotopic compositions and elemental concentrations of Rb-Sr, Sm-Nd, Lu-Hf, U-Th-Pb, Li, B, Mg, K, Zr, and REE. Equipment: Seven-collector Finnigan-MAT 261 thermal ionization mass spectrometer (1987) A single-channel ion-counting systems.
U-Pb Geochronology (TIMS) Laboratory
Provides precise, conventional U-Pb ages in support of research to both internal and external collaborators (faculty, graduate students and researchers). Equipment: clean laboratory, with 3 laminar-flow HEPA-filtered workstations and related equipment for ultra-clean chemical separation.
U-Pb Geochronology Clean Labs
Within the Department of Geological Sciences there are three clean-room laboratories supplied with HEPA-filtered class 100 air where sample preparation and ion-exchange chromatography for isotopic analysis may be done under ultra-clean conditions, making possible very low analytical blanks (e.g., < 1 pg Pb for U-Pb geochronology, and <10 pg Sr). There are also two other laboratories with HEPA-filtered work stations where sample preparation and ion-exchange chromatography are performed. These labs are supported by the departmental sample preparation facility, which includes shatterboxes for sample pulverization, and a crusher, a disc mill pulverizer, a Rogers table, a Wilfly table, a mica table, sieves, heavy liquids and Franz magnetic separators for mineral separation.

Affiliated UT Programs & Centers

Environmental Science Institute
The Environmental Science Institute is a multi-disciplinary institute for basic scientific research in environmental studies founded by The University of Texas at Austin. The Institute serves as a focal point on campus for a wide scope of interdisciplinary research and teaching involving the complex interactions of the biosphere, hydrosphere, and lithosphere in the Earth system, as well as the human dimensions of these interactions.