The Climate Dynamics Program in the Jackson School of Sciences is a collaboration between faculty and researchers in the Department of Geological Sciences, and researchers at the University of Texas Institute for Geophysics. We investigate a broad range of climate processes with numerical models, mathematical diagnosis, and observational analysis. Some projects are aimed at advancing our fundamental knowledge of how climate works, and others are more applied with an eye toward prediction and impacts.

Some primary general areas of research are as follows:Prospective Graduate students: The Graduate Program in Climate Dynamics is actively seeking strong graduate students for participation in our Graduate Program. Please see the "Education" tab for additional information.

Faculty & Research Scientists

Todd  CaldwellTodd Caldwell
Dr. Caldwell is a hydrologist and geoscientist specializing in field investigations and numerical modeling associated with near-surface vadose zone hydrology, landscape evolution, and soil moisture/ET. His current research focuses on ecohydrology, soil moisture modeling and monitoring, restoration and characterization of disturbed lands, the characterization and scaling of soils and hydraulic parameters, near-surface geophysics, and parameter optimization and numerical methods.
Kerry H CookKerry H Cook
Climate dynamics, atmospheric dynamics, global climate change, paleoclimate, climate and weather of Africa and South America, climate system modeling, climate change in Texas
Jacob A CovaultJacob A Covault
sedimentology, stratigraphy, marine geology
Pedro Di Nezio
Robert E DickinsonRobert E Dickinson
Climate, Global Warming, Land Surface Processes, Remote Sensing, Hydrological Cycle, Carbon Cycle, and Modeling.
Patrick Heimbach
ocean dynamics and its role in climate variability; Earth system modeling with emphasis on ocean, sea ice, and ice-ocean interactions; inverse modeling; state and parameter estimation; adjoint methods; algorithmic differentiation; uncertainty quantification
Charles S JacksonCharles S Jackson
global warming, abrupt climate change, sea level rise, ocean mixing, Bayesian Inference, inverse modeling, simulation, climate projections, uncertainty quantification
Joe LevyJoe Levy
Permafrost, Antarctica, Planetary geology, Mars, Geomorphology, Remote Sensing, GIS
Yuko M OkumuraYuko M Okumura
Climate dynamics, climate variability and change, large-scale ocean-atmosphere interactions, atmospheric teleconnections, paleoclimate and thermohaline circulation
Judson W PartinJudson W Partin
Paleoclimate, Stable and Radiogenic Isotope Geochemistry
Terrence M QuinnTerrence M Quinn
Paleoclimate, climate, climate change, climate dynamics, paleoclimatology, paleoceanography, sedimentary geology and geochemistry
Bridget R ScanlonBridget R Scanlon
Evaluation of the impact of climate variability and land use change on groundwater recharge, application of numerical models for simulating variably saturated flow and transport, controls on nitrate contamination in aquifers
Zong-Liang  YangZong-Liang Yang
Dr. Yang's primary research interest is to understand the exchanges of momentum, radiation, heat, water, carbon dioxide, and other materials between the atmosphere and the Earth surface spanning from small (short) to very large (long) scales. This includes analysis of in-situ and remotely-sensed data for the Earth's surface, and modeling studies of weather, climate and hydrology at local, regional and global scales.

Research Staff

Edward Edward "Ned" K Vizy
climate dynamics, atmospheric dynamics, climate change, extreme weather events, climate system modeling, hurricanes, paleoclimate, mesoscale modeling
Jiangfeng  WeiJiangfeng Wei
Land-atmosphere interactions, hydrology, water cycle

Graduate Students

Sudip Chakraborty
I use A-Train as well as ISCCP geostationary satellite data to unfold the mystery behind the convective transport of aerosols and the influence of those transported aerosols on those clouds. I use the software IDL to analyse the data. My primary research interests are: - Transport of Pollutants from the Lower Troposphere to Upper Troposphere and Lower Stratosphere. - Physical and Dynamic Structure of Deep Convection - Analysis of Satellite data (NASA A-Train, ISCCP) - ...
Wenting Fu
Yonghwan Kwon
Peirong  LinPeirong Lin
Weiran Liu
Gail MuldoonGail Muldoon
I am interested in better understanding uncertainty in climate predictions in order to reduce that uncertainty. My research explores the intersection of data and modeling efforts, in order to evaluate how uncertain models make use of uncertain data. My current projects focus on the contribution of ice sheets (Greenland and Antarctica) to rising sea level. I have been using the Community Earth System Model to evaluate the evolution of the Greenland ice sheet from pre-industrial ...
Michael T O'connorMichael T O'connor
I am most interested in the hydrologic and biogeochemical processes occurring at and near the surface of the Earth. I use field and laboratory techniques as well as numerical modeling to understand and represent these complex systems. My current research focuses on the variably saturated flow and nutrient transport dynamics of Arctic permafrost systems. I hope to use this work to help describe the mechanisms for terrestrial Arctic carbon export. I am also very interested ...
Eric I Petersen
Eric Petersen is a PhD student working on Martian lobate debris aprons (LDAs), strange landforms interpreted as massive debris-covered glacier systems. As remnants of past obliquity-driven glacial cycles on Mars, these features are valuable indicators of Amazonian palaeoclimate. Eric's work involves using SHARAD orbital radar sounding data in conjunction with ice flow modeling and geomorphic analysis to provide constraints on LDA formation and history. He is also interested in geophysical studies of debris-covered glaciers and ...
Natasha Sekhon
Paleoclimatology & Isotopic Geochemistry
Kaustubh ThirumalaiKaustubh Thirumalai
Research interests: Paleoclimate/Paleoceanography, Paleogeodesy, Foraminifera, Corals, Proxy Uncertainty My research involves the reconstruction of oceanographic parameters such as sea-surface temperature and salinity over the Holocene utilizing planktic foraminifera in marine sediment cores. Comprehensive observations of climatic fluctuations in the ocean and atmosphere have only been measured (with varying degrees of quality) for the last ~150 years, a mere geological instant. In order to understand the variability of climate over large timescales, driven by various forcing ...
Xian Wu
Kai  ZhangKai Zhang
For further details, please click Links and go to my homepage.
In addition to contributing courses to the undergraduate major in Geosciences, the Climate Dynamics group offers a comprehensive graduate education program. For graduate students, research projects and coursework are both essential elements of a successful graduate career. Here we provide information about selecting a mentor and research direction within the Climate Dynamics Program, and about our course offerings.

Selecting the right graduate program is a much more individual endeavor than selecting an undergraduate school. It is important that your research interests and working style are good matches for those of your major professor. We encourage you to connect with prospective major professors within the Climate Dynamics Program as a first step in the application process. Explore the research topics of each professor and researcher in the program, and send one or more an informed email discussing your overlapping interests and goals to begin a dialog.

Graduate Student Research

Faculty and researchers in the Climate Dynamics Program generally have ongoing research projects in more than one area. These projects may be highly disciplinary and individual, or broadly interdisciplinary involving colleagues in related fields of study.

As a start for your explorations of graduate study at this large and diverse university, we list the members of the Climate Dynamics Graduate Program who make primary contributions to graduate teaching in addition to their research programs. Click the links to individual web pages for more detailed information about ongoing projects. Contact these researchers for more information about their research programs, current availability of support for graduate students, and their advice about other potential good matches for your interests.

Jay L Banner
Professor, Department of Geological Sciences

Isotopic methods, groundwater, oceans, ancient oceans, climate change, aquifers, caves, environmental science, geochemistry, paleoclimatology

Kerry H. Cook
Professor, Department of Geological Sciences

Climate dynamics, atmospheric dynamics, global and regional climate change, climate modeling, observational analysis, climate prediction and impacts

Robert E Dickinson
Professor, Department of Geological Sciences

Climate change, land surface processes, remote sensing, hydrological cycle, carbon cycle, climate modeling

Pedro DiNezio
Research Associate, Institute for Geophysics

Tropical oceans and climate, climate variability, climate prediction, paleoclimate

Patrick Heimbach
Associate Professor, Department of Geological Sciences

Ocean dynamics, climate variability, Earth system modeling, ice-ocean interactions, inverse modeling, adjoint methods, uncertainty quantification

Charles S. Jackson
Research Scientist, Institute for Geophysics

Global warming, abrupt climate change, sea level rise, ocean mixing, Bayesian Inference, inverse modeling, simulation, climate projections, uncertainty quantification

Yuko M. Okumura
Research Associate, Institute for Geophysics

Climate dynamics, climate variability and change, large-scale ocean-atmosphere interactions, atmospheric teleconnections, paleoclimate and thermohaline circulation

Terrence M Quinn
Professor, Department of Geological Sciences
Director, Institute for Geophysics

Paleoclimate, climate change, climate dynamics, paleoceanography, sedimentary geology and geochemistry

Timothy M Shanahan
Associate Professor, Department of Geological Sciences

Paleoclimatology, paleoceanography, paleolimnology, sedimentary geology and geochemistry, organic geochemistry, isotope geochemistry, compound-specific

Edward K Vizy
Research Scientist Associate V/ Lecturer, Department of Geological Sciences

Climate dynamics, atmospheric dynamics, climate change, extreme weather events, climate system modeling, hurricanes, mesoscale modeling

Jiangfeng Wei
Research Engineering/ Scientist Associate IV/Lecturer, Department of Geological Sciences

Land-atmosphere interactions, hydrology, water cycle

Zong-Liang Yang
Professor, Department of Geological Sciences

Land-surface atmosphere interactions, climate and hydrology, regional climate modeling


To earn the doctoral degree, we currently require a minimum of 18 semester hours of coursework (generally 6 classes) within the Climate Dynamics discipline, and supporting coursework of 9 credit hours (3 classes) outside the discipline to broaden students' knowledge and skill base. (Please see the Graduate Student Handbook for additional information about degree requirements.)

Below we provide a list of classes offered the Climate Dynamics program. Keep in mind, however, that course offerings change year-to-year and selections are made with individual interests and goals in mind.

Climate Dynamics Discipline Courses

Physical Climatology Z.-L. Yang
Climate System Physics R. Dickinson
Geophysical Fluid Dynamics I: Atmospheres and Oceans K. Cook
Geophysical Fluid Dynamics II: Waves and Instability K. Cook
Paleoclimatology T. Shanahan
Climate Variability and Change Y. Okumura, P. diNezio
Climate System Modeling E. Vizy
Land Atmosphere Interaction Dynamics Z.-L. Yang
Global Warming K. Cook
Modeling the Global Oceans P. Heimbach
Climate Change: Current Literature R. Dickinson
Hypothesis Testing in the Climate Sciences C. Jackson/J. Partin
Coupled Earth System Modeling J. F. Wei
Physical Oceanography P. Heimbach
Tools for Earth System Modeling M. Shaikh
Research opportunities are available for both current UT undergraduate students and prospective graduate students.

Undergraduates: First review the research programs of the Climate Dynamics faculty and researchers (see the "People" and "Education" tabs), and then contact individuals concerning the availability of undergraduate research opportunities for theses and projects. Different research opportunities will require different backgrounds, and it’s important to find a good match for your interests and future goals.

Prospective Graduate Students: Availability of supported graduate student positions varies from year to year depending on funding. Under the "Education" tab you will find information about potential areas of research.
Aerogeophysical SystemsAerogeophysical Systems
UTIG has developed, maintained, and operated a suite of aerogeophysical instrumentation since the early 1990s with continual improvements since inception. The suite was installed aboard a Dehavilland DHC-6 ("Twin Otter") up to 2005 and aboard a Basler BT-67 (a version of DC-3T -- a Douglas DC-3 refitted with turboprop engines) since 2008. The current instruments are: High Capability Radar Sounder (HiCARS); Multibeam, Scanning Photon Counting Lidar; Cesium Vapor Magnetometer; Gravimeter; Dual-frequency, carrier-phase Global Navigation Satellite Systems (GNSS); Laser Altimeter; Two GPS-aided Inertial Measurement Units; Three-Axis Fluxgate Magnetometer; System Control, Data Acquisition, and Real-time QC and Monitoring functions.
Analytical Lab for Paleoclimate StudiesAnalytical Lab for Paleoclimate Studies
The Jackson School of Geosciences now has four stable isotope laboratories. UTIG Director and DGS faculty member Terry Quinn supervises one of these labs: ALPS. The ALPS houses two, state-of-the-science, Thermo isotope ratio mass spectrometers and an Inductively Coupled Plasma-spectrometer (ICP).
Environmental Scanning Electron MicroscopeEnvironmental Scanning Electron Microscope
Installed in the fall of 2001, this is a 30 kV tungsten gun high-resolution environmental scanning electron microscope (ESEM) with a 3.5 nm resolution in high vacuum, low vacuum, and environmental modes at 30 kV. The ESEM is equiped with a Peltier cooled stage, a heating stage, an EDS sytem (EDAX), a EBSD system (HKL Oxford Instruments), and a cathodoluminescence detector (Gatan).
HR-ICP Mass Spectrometers
Equipment available: Thermo Element2 HR-ICP-MS with ESI autosampler system for solutions; and Thermo Element2 HR-ICP-MS with Photonmachines Analyte G2 Excimer laser ablation system.
Quadrupole ICP Mass Spectrometer
The Quadrupole ICP-MS laboratory (with laser ablation) is used for elemental determinations in a wide range of liquid (e.g., natural waters, dissolved sediments/rocks, digested biomass) and solid (e.g., rocks, minerals, glasses) samples. The ICP-MS instrument is an Agilent 7500ce, capable of measuring trace element concentrations in solution over a nine-order linear dynamic range, from ppt to 100s of ppm. Sample introduction systems include a Micromist concentric nebulizer with a Peltier-cooled spray chamber for aspirating solutions, and a New-Wave UP193-FX 193 nm excimer laser ablation system for micro-sampling of solids. Sub-ppm detection limits are obtained routinely by laser ablation. The Agilent 7500ce is equipped with a collision/reaction cell, allowing for quantification of environmentally important matrix/plasma-sensitive elements such as As, Se, and Fe. The instrument is housed in a positive-pressure HEPA-filtered laboratory equipped with a weighing station, laminar flow bench, and Type 1 (18.2 M?) ultrapure water station.
Texas Advanced Computing Center (TACC)
TACC designs and deploys the world's most powerful advanced computing technologies and innovative software solutions to enable researchers to answer complex questions. TACC's environment includes a comprehensive cyberinfrastructure ecosystem of leading-edge resources in high performance computing (HPC), visualization, data analysis, storage, archive, cloud, data-driven computing, connectivity, tools, APIs, algorithms, consulting, and software.
Thermal Ionization Mass Spectrometry (TIMS) LabThermal Ionization Mass Spectrometry (TIMS) Lab
Measures the isotopic compositions and elemental concentrations of Rb-Sr, Sm-Nd, Lu-Hf, U-Th-Pb, Li, B, Mg, K, Zr, and REE. Equipment: Seven-collector Finnigan-MAT 261 thermal ionization mass spectrometer (1987) A single-channel ion-counting systems.
Center for Integrated Earth System Science
The Center for Integrated Earth System Science (CIESS) is a cooperative effort between the Jackson School of Geosciences and the Cockrell School of Engineering. The center fosters collaborative study of Earth as a coupled system with focus on land, atmosphere, water, environment, and society.
Center for International Energy & Environmental Policy
In 2005, the University of Texas at Austin chartered the Center for International Energy and Environmental Policy (CIEEP), to join the scientific and engineering capabilities of the University's Jackson School of Geosciences and the College of Engineering with the LBJ School of Public Affairs. The University's first center dedicated to energy and environmental policy, CIEEP will seek to inform the policy-making process with the best scientific and engineering expertise.
Gulf Coast Carbon Center
The Gulf Coast Carbon Center (GCCC) seeks to apply its technical and educational resources to implement geologic storage of anthropogenic carbon dioxide on an aggressive time scale with a focus in a region where large-scale reduction of atmospheric releases is needed and short term action is possible.
Land, Environment & Atmospheric Dynamics
The LEAD group consists of graduate research assistants, postdoctoral fellows, research scientists and visiting scholars. We view the earth system in a holistic way, linking the atmosphere, ocean, biosphere, cryosphere, and solid earth as an integrated system. We use powerful methodologies such as satellite remote sensing and supercomputing simulations which are now profoundly changing research in earth system sciences. We place a strong emphasis on the societal impact of the research in earth system sciences.
Latin America & Caribbean Energy Program
The Latin America & Caribbean Energy Program will create, foster and maintain a regional outreach network that will nurture cooperative and frank discussions of issues related to sustainable development of energy resources and environmental stewardship. The network will include representatives from governments, universities, private sector, multilateral agencies, industry and professional associations and other stakeholders.
Remote Sensing of Earth and Planetary Surface and Environment Program
This program will bring visibility to satellite remote sensing research at JSG among funding agencies and peers, and attract students with strong physics and engineering background and interests in using satellite remote sensing technology to study earth-atmosphere processes.

Affiliated UT Programs & Centers

Center for Space Research
The University of Texas at Austin, Center for Space Research was established in 1981 under the direction of Dr. Byron D. Tapley. The mission of the Center is to conduct research in orbit determination, space geodesy, the Earth and its environment, exploration of the solar system, as well as expanding the scientific applications of space systems data.
Environmental Science Institute
The Environmental Science Institute is a multi-disciplinary institute for basic scientific research in environmental studies founded by The University of Texas at Austin. The Institute serves as a focal point on campus for a wide scope of interdisciplinary research and teaching involving the complex interactions of the biosphere, hydrosphere, and lithosphere in the Earth system, as well as the human dimensions of these interactions.
Texas Advanced Computing Center
The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is one of the leading centers of computational excellence in the United States. Located on the J.J. Pickle Research Campus, the center's mission is to enable discoveries that advance science and society through the application of advanced computing technologies.
UT Austin Energy Institute
The Energy Institute has been established at the University of Texas at Austin to provide the State of Texas and the Nation guidance for sustainable energy security through the pursuit of research and education programs - good policy based on good science. The Institute will determine the areas of research and instruction in consultation with an Institute Advisory Board, faculty and staff at the University of Texas at Austin, the private energy sector, public utilities, non-governmental organizations, and the general public. The economic future of the State of Texas, and our Nation, depends upon the viability of sustainable energy resources. The mission of the Energy Institute is to provide the transformational changes through research and instruction that are required for this State's and Nation's sustainable energy security.