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Objectives and Motivations 
 The goal of this project is to use ArcGIS to create models based on characteristic features that 

may be useful as indicators of the presence of ore deposits in West Texas, and to use these models to 

perform a suitability analysis within the region to predict the potential locations of other such deposits 

that are yet to be discovered.  Furthermore, the project intends to serve as a demonstration of the 

diverse applications for GIS software. 

Methods 
 To achieve this end, I aimed to combine geophysical data representing magnetic and 

gravitational field anomalies throughout the region in coordination with geologic map data pertaining to 

the surface geology.  My plan called for first examining the surface geologic units, contained in a 

polygon shapefile (see fig. 1), within the region and determining which of these surface units contain 

known deposits, included in a point shapefile, of Uranium, Silver, Gold, or Mercury ores.  I would then 

determine the relative quantities of each ore contained within each of the given rock units.  Next, I 

edited the known deposits point shapefile to create four new feature classes, each containing only 

locations corresponding to one the above elements.  I then qualitatively assigned rankings to each rock 

unit, and for each element, based on the relative levels of occurrence of the given element within the 

rock layer.  These rankings were compared to the host rock units and altered rock units listed for the 

deposit locations that contained information in these fields, and any adjustments, perhaps arising from 

an ore being hosted within a subsurface unit, were then made to the rankings.  Next, I planned to 

analyze the geophysical raster data in the attempt of determining which, if any, field anomalies 

generally correspond to the presence of the ore bodies and/or their host rocks.   Finally, I intended to 

create a raster layer, for each ore type, whose cell values would be the result of the combination of the 

factors and patterns, after applying appropriate weights, related to the ore type. 

Data Collection 
 The statewide GIS data used in the completion of this project was gathered from the USGS 

website.  Unfortunately, the geophysical datasets (figs. 2, 3, and 4) were at a 2000m raster cell size and 

higher resolution data could not be found from any source.  Due to the low resolution of these raster 

layers, a high degree of uncertainty was inherent in their application to the model, and so they were 

only used when it appeared that a strong and quantifiable correlation existed between an anomaly 

trend and the presence of potential ore-bearing rock units.  Several attempts were made to procure 

higher resolutions geophysical anomaly datasets, but none were found for the entire region and so the 

2000x2000m data was used. 



 

Figure 1 – Statewide rock units polygon shapefile (1:250K) for surface geology 

 

Figure 2 – Statewide Bouguer gravity anomaly layer 
  



 

Figure 3 – Statewide isostatic gravity anomaly layer 

 

Figure 4 – Statewide aeromagnetic anomaly layer 



Preliminary Data Processing 
 Before beginning to actually create this model within ArcGIS, it was necessary to import all of 

the relevant data layers into an ArcGIS data frame, and to ensure that all of the imported files had been 

properly projected into the Texas Albers coordinate system.  I then utilized the “clip” tool (see fig. 5) to 

remove unnecessary data from the known mineral deposit point feature class and the Texas counties 

and surface geology polygon feature classes by clipping the layers to the counties of interest.  For similar 

reasons, I then used the “extract by mask” tool to remove, or define as null, all of the raster cells not 

contained within those counties, by defining the clipped Texas counties shapefile as a mask for each of 

the rasters. 

 

 

Figure 5 – Clip Tool 

Next, the 1:250K rock unit polygon class was then related to its corresponding table in order to allow for 

more manageable analysis and identification of these units and four separate point feature classes were 

created to contain the points corresponding the known deposits of each of the four elements of interest 

(see fig. 6).  This allows distinctive symbolization of each deposit type to easily be achieved and altered 

on a case-by-case basis, as necessary, during preliminary processing and analysis.  Additionally, the 

existence of individual feature classes allowed for the attributes related to the points for each ore type 

to be exported to separate Excel sheets, which would prove to be important in several processing steps. 

 After defining the symbols for each of these point classes, I then zoomed in on the map and 

could finally make the shapefile for the surface rock units visible.  This enabled for a detailed qualitative 

and quantitative analysis of the surface unit polygons containing points for any of these classes (see figs. 

7, 8, and 9).  Upon determining the rock units containing deposit points on the map, I verified or 

disqualified the potential for the units to contain such deposit using the aforementioned spreadsheet 

tables, which contained information on the host and altered rock types for some points.  The 

discrepancies between the apparent host rock on the map and as listed in the attribute tables arises 

from two possibilities: 1) the large scale (1:250,000) at which the geologic units were originally mapped 



inherently prohibits small outcrops from appearing in the map, and 2) the ore body may have been 

covered over by another rock unit, such as Quaternary sediments. 

 

Figure 6 – The clipped Texas counties shapefile.  Known mineral deposit locations  

are represented as follows:  grey for silver, yellow for gold, green for uranium, 

and blue for mercury. 

 

 



 

Figure 7 – Labeled map of rock units contained within Box B in figure 6. 

Contains Ag (grey), Au (yellow), and U (green) ore deposits. 

 

 



 

Figure 8 – Labeled map of rock units contained within Box C in figure 6. Contains Ag (grey)  

and Au (yellow) ore deposits. 

 

 



 

Figure 9 – Labeled map of rock units contained within Box E in figure 6.  Primarily contains  

Hg (blue) and U (green) ore deposits. 

 

 Once the relative abundances of each ore type contained within each host rock unit had been 

determined, a field was added for each element to the rock unit polygon attribute table (see fig. 10), 

with initial values of the fields being defined as null.  These fields for each elements were populated 

with ranks based on the recently determined relative ore abundances within the corresponding rock 

unit type, with high ranks being related to a relatively large number of ore deposits and mines being 

located within that rock type.  This was achieved by creating an SQL query script (fig. 11, left) to select 

the rock units in groups of those units that would be assigned identical ranks, and the field calculator 

tool was used to populate the relevant field, for all selected entries, with the rank value corresponding 

to those units (fig. 11, right).  This process was repeated until the appropriate ranks had been applied to 

each rock unit type containing, or possibly containing, a known ore deposit. 



 

Figure 10 – The attribute table for the rock unit polygon feature class, with the 4 new  

rank fields having been added to the end of the table. 

  

Figure 11 – (Left) The select by attributes tool and SQL query script. (Right) The field  

calculator tool for defining cell values in the chosen attribute field. 



 

ArcGIS Processing 
 Perhaps due in part to the resolution of the magnetic and gravitational anomaly data, there was 

some difficulty in establishing a consistent relationship between the presence of these ore bodies and 

the existence of local anomalies.  No correlations could be determined between mineral deposits and 

variance in the Earth’s magnetic field, however, there did appear to be a fairly reliable connection 

between the presence of silver and gold ore bodies and the existence of high frequency isostatic gravity 

anomalies (or relatively large fluctuations in the Earth’s gravitational field, which are not due to 

variations in surface topography) in the vicinity of very large, positive isostatic anomalies.  To qualify this 

relationship, I used the Slope tool (see fig. 12) to create a raster with cell values equal to the slope of the 

values of the clipped isostatic anomaly raster, with a Z factor of 2000.  I then applied the Focal Statistics 

tool (see fig. 13) to the slope raster to create a focal statistics standard deviation raster with cell values 

equal to the standard deviation of slope values within a 3-cell x 3-cell neighborhood of the given cell. 

 

 

Figure 12 – Slope tool 



 

Figure 13 – Focal Statistics tool to calculate the standard deviation of cell  

values within 3x3 square neighborhood 

 

Figure 14 – Reclassify tool 

 



 

Figure 15 – Iso_grav_analysis raster. Red corresponds to high cell values, which  

are predicted to indicate areas with an increased probability  

of containing gold and silver ores. 

 

 Next, I used the Reclassify tool (see fig. 14) to create two new rasters by reclassifying the slope 

and focal statistics rasters with more appropriately weighted cell values.  These two new rasters were 

then added together using the Plus tool to create the Iso_grav_analysis raster (see fig. 15) that would 

later be used in the creation of the ore deposit suitability analysis rasters for gold and silver ores. 

 Using the rank values from the four previously populated attribute fields, I then created four 

rank rasters, one for each ore type, from the rock units shapefile via the Polygon to Raster tool (see fig. 

16).   From each of those four rasters, I then created two new rasters with the Aggregate tool; one using 

the SUM aggregation technique, and a second using the MAX aggregation technique.  Because I used a 

cell factor of 20 (original rasters converted from polygons had a cell size of 100m to better represent the 

distribution and identity of the rock units) and turned off the “Expand extent” option, these 8 aggregate 

raster have cells of the same size and in the same locations as the anomaly rasters.  I then reclassified 

each of the 8 rasters, based on the relative importance for each element of its corresponding aggregate 

sum raster to its aggregate max raster, which is another way of saying “based on the relative importance 

of the amount of potential host rocks contained within a cell to the quality of ores produced from those 

rock units in controlling the probability of ore being present within that cell”.  The two rasters for each 

element were then added to each other using the plus tool to create the final suitability analysis rasters 



for mercury and uranium (see figs. 17 and 18, respectively) and a two new geology rasters for silver and 

gold.  In the case of silver and gold ores, an appropriate reclassification of the Iso_grav_analysis raster 

was then added to the newly created sum rasters to create their final suitability analysis rasters (see figs. 

19 and 20, respectively). 

 

 

Figure 16 – Polygon to Raster tool set to create raster called Hg_rank, with a cell size of 100m, from the 

hg_rank field of the rock units polygon class 

 

Conclusions 
 From the final raster models, we see that the predictions for the locations of silver and mercury 

ores match up very well with the locations of known deposits, while the predictions for gold deposits 

match well, they are not quite as precise for those of Ag and Hg, and the predictions for uranium 

deposits match only moderately, at best.  It is likely that the predictions for mercury deposits only match 

so well because the vast majority of known Hg deposits were found within a single rock unit which only 

occurs in one area of the map.  Obviously that unit had to be given a higher ranking than other rock 

units, but because it only outcrops in a small area within west Texas, this means that the only area being 

modelled with a high likelihood of deposits, is the same small area that is already known to contain the 

vast majority of the deposits.  For the gold, silver, and uranium predictive models, I would propose a 

different explanation.  Concerning these ore models, it is my estimation that the predictions for gold and 

silver are far more accurate than those for uranium because of the correlation that could be made with 

between Au/Ag and isostatic anomalies.  The basis for my conclusion that such a correlation could be 

drawn lies not only in observation from the map, but also in a line of logic related to the geologic setting 

within which these ores are found in the region.  From the analysis I performed on the host rock setting 

of Ag, Au, and U in the early stages of this project, I recognized that a large percentage of all three ore 

types seemed to be hosted within igneous and metamorphic rock, which of course makes sense for 

these heavy elements.  I also recognized that the Ag and Au tended to occur near areas of high, positive 

isostatic anomalies (indicating a high rock density) which lie in areas with very large, high frequency 



variations caused by isostatic anomalies.  This would indicate to me that these ores do in fact lie in 

dense igneous (intrusive) and metamorphic rocks, which explains the correlation between their 

presence and high isostatic anomalies since they lie in much denser rock than the sedimentary rocks of 

which the majority of the area is comprised.  This analysis can be intuitively coupled with an explanation 

of the rapid isostatic anomaly variations surrounding these rocks by simply recognizing that such 

anomalies can easily be explained within a large, ancient fault zone, that brought dense old rock into 

sharp contact with less dense sedimentary rock and, in doing so, created weaknesses through which the 

magma that formed the igneous rocks could have flowed.  Though this certainly does not prove that the 

correlation does in fact exist, it does seem to fit well with the geology evident from the surface map 

alone.  The reason that uranium does not similarly correlate with the isostatic anomalies and the model 

prediction may possibly be due to either the low number of known deposits, allowing for greater error 

within the model through lack of data, or it may be due to the fact that, unlike silver and gold, uranium 

is somewhat soluble in water, and so much the uranium within these host rocks may have tended to 

weather out at the surface faster than the other elements, possibly explaining why deposits of it have 

been found relatively more often in sedimentary rocks than the others. 

 

Figure 17 – Suitability analysis raster for mercury ore.  Red corresponds to higher probability of ore 

deposits being found within the cell. 



 

Figure 18 – Suitability analysis raster for uranium ore.  Blue corresponds to higher probability of ore 

deposits being found within the cell. 



 

Figure 19 – Suitability analysis raster for silver ore.  Blue corresponds to higher probability of ore 

deposits being found within the cell. 



 

Figure 20 – Suitability analysis raster for gold ore.  Blue corresponds to higher probability of ore deposits 

being found within the cell. 
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