Ryan Soutter

GIS Final Project

Cellulosic Ethanol Feasibility for Existing Ethanol Plants in Iowa

Problem Formulation

The question this project answers is which dry mill ethanol plants in Iowa are most feasible to add a cellulosic attachment to their refinery based on the DuPont equation in the following graphic without competing for resources? In other words, which plants are surrounded by at least 815,000 acres of corn in a 30 mile radius that only they can use? Plants with more corn surrounding them make better candidates for cellulosic ethanol expansion. Note that current plants only use the starch from the corn grain to produce ethanol as of this time and not the corn stover which is the left over plant matter.

Source: http://biofuels.dupont.com/cellulosic-ethanol/nevada-site-ce-facility/

To do this I will locate the lowa dry mill ethanol plants and create a point file. I will then add a raster comprised of corn crop cover for lowa. I must reclassify the raster so that all values are 0 except for corn. I then make a 30 mile dissolved buffer for each plant and a Thiessen polygon for each plant and I will intersect the two to create boundaries that do not overlap and are equidistant from each point. With these buffers and the corn raster layer I then use Zonal Statistics as Table to acquire the amount of pixels in each zone. Using some simple arithmetic in field calculator I convert the 30m² pixels into acres and evaluate. Then I clip with an Iowa state boundary layer.

Data Collection/Preprocessing

The first thing I did was to locate the ethanol plants in Iowa. I did so with Mapsengine (https://mapsengine.google.com/map/u/0/edit?hl=en&mid=zj0Os5WZ9AYI.kzpoJ-jelJ00).

This gave me the name and general location of each plant. I then needed to find out their exact locations. I then found latitude and longitude coordinates in decimal degrees in lowa state files at <a href="http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=0CEYQFjAG&url=http%3A%2F%2Fwww.iowadnr.gov%2FPortals%2Fidnr%2Fuploads%2Fwater%2Fnpdes%2FWebsite_file.xls&ei=B AJcU4f-COGsyAGCwoC4CQ&usg=AFQjCNFCOCaZU-JVh-UpTt_FnQvFVgtOIA&bvm=bv.65397613,d.aWc

I am working in a NAD83 UTM 15N projection because I will need to calculate length later so I found an online conversion calculator and turned my decimal degrees into x, y coordinates for NAD83, UTM 15N. I uploaded this information, along with the ethanol plant name, city, and county, into an excel spreadsheet. I then added data>Add XY Data and input the points into ArcMap.

Next I located and downloaded an online raster of crop data for Iowa at

http://nassgeodata.gmu.edu/CropScape/

With the metadata at http://www.nass.usda.gov/research/Cropland/metadata/metadata_ia13.htm

I used the Reclassify tool to eliminate the large list of crops into corn and null values.

I also obtained a county outline shape file for Iowa at http://www.igsb.uiowa.edu/nrgislibx/

With metadata at: http://ftp.igsb.uiowa.edu/gis_library/IA_state/Admin_Political_Boundary/County.htm

Now I have all the data I need to perform my analysis! Luckily, NAD83 UTM 15N is very common for Iowa, and I don't have to convert my imported data.

ArcGIS Processing

Now that I have my county outline shape file, my separated corn raster data, and my plant location point file uploaded I can begin processing my data. First I start by buffering the ethanol plants by 30 miles (48280 meters) with a dissolve so that they create one polygon if they do overlap. This is step is needed because you would segment your analysis in a way that is not conducive to easily getting data if you didn't dissolve. Then I apply a Thiessen polygon to the plant locations taking care in the Environments section to fit the polygons to my corn raster. Finally I use the Intersect tool on the Thiessen polygons and the 30 mile dissolved boundary buffers and I clip it to the state border. It looks like this:

Now I have my areas all partitioned out and my corn data ready for processing. I use Zonal Statistics as Table to create values for the amount of pixels but my data came out sideways (literally).

3	Zonal Statis	stics as Tabl	e	-							
	Input raster	or feature zo	one data					_ ^ Z	onal Statis	tics as	*
	clip_buff						- [🖆 T	Table		
	Zone field										
	FID_true_t							• S	Summarizes the values of a raster within the zones of another dataset and reports		
	Input value r	raster									
	cornonly 🗾 🖻					🖆 th	the results to a table.				
	Output table										
C:\Users\Ryan\Desktop\GIS_Project\table_corns											
	☑ Ignore NoData in calculations (optional)										
	Statistics typ	e (optional)									
	SUM							-			
1											
1											
Ta	ble										
0	- B	- 🔚 🧏	🛃 🛛 📲 🕽	<							
table_corn											
	Rowid	LABEL	FID_T_0	FID_T_1	FID_T_2	FID_T_3	FID_T_4	FID_T_5	FID_T_6	FID_T_7	
Þ	1	Corn	1356103	1721858	1216026	2278581	1988580	1653199	1013933	720723	

I can't add fields or manipulate my data in this format very easily so I reached for my Transpose Fields tool, selected my pixel values, and presto!

input l'able		Î	Transpose Fields
table_corn		- 🖻	
Fields To Transpose			Shifts data entered in fields
Field Name	Value	*	table or feature class.
LABEL		E	
FID_T_0	FID_T_0		This tool is useful when
FID_T_1	FID_T_1		your table or feature class
FID_T_2	FID_T_2		stores values in field
FID_T_3	FID_T_3		names (such as Field1,
FID_T_4	FID_T_4		Field2, Field3) and you
FID_T_5	FID_T_5		want to transpose the field
FID T 6	FID T 6		corresponding data values
C:\Users\Ryan\Desktop\GIS_Projec iransposed Field PID	t\tacosparati.dbf		
alue Field			
Attribute Fields (optional)			
Rowid		*	
LABEL		=	
FID_T_0			
FID_T_1			
FID T 3			
FID_1_2			
FID_T_3			
FID_1_2			

Table							
					pixels	Facility_N	
🗄 • 🖶 • 💾 🚱 🛛 🐗 🗙				×	1721858	SOUTHWEST IOWA RENEWABLE ENERGY	
go	od_tab	le			1356103	GREEN PLAINS SHENANDOAH, LLC	
	OID	ID	pixels		1216026	POET BIOREFINING - CORNING	
Ŀ	0	FID_T_1	1721858		2278581	BIG RIVER RESOURCES WEST BURLINGTO	
F	1	FID_T_0	1356103		1988580	FLINT HILLS RESOURCES MENLO, LLC	
F	3	FID T 3	2278581		1653199	POET BIOREFINING - COON RAPIDS	
E	4	FID_T_4	1988580		1013933	LOUIS DREYFUS COMMODITIES, GRAND JU	
	5	FID_T_5	1653199		720723	POET BIOREFINING - GOWRIE	
F	6	FID_T_6	1013933		1450811	VALERO RENEWABLE FUELS COMPANY, L	
F	8	FID T 8	1450811		1697519	CORN, LP	
F	<u>م</u>	FID T 9	1697519		1939681	LINCOLNWAY ENERGY, LLC	
1	• •	1	► ►		1174023	POET BIOREFINING - JEWELL	
ģ	good_table				1161783	FLINT HILLS RESOURCES IOWA FALLS, LL	

Now I take these values and join them to my ethanol plant point layer so that I can have my pixel value associated with the name and location of the plants. Pixels don't mean much to me so I need to put them into useable values. First I make a new field and call it area_m_. I know my pixels are 30m² so I multiply the total count by 30² in the field calculator in the attribute table. This gives me my area in meters, but what I really want to know is what the area is in acres. So I take the area_m_ and divide it by 4,047 in the attribute table field calculator because there are 4,047 square meters in one acre. Now I know my cover of corn for each segment in acres!

Unfortunately, none of the areas meet the requirements for DuPont's assessment...

Facility Name	<u>acres</u>
BIG RIVER UNITED ENERGY, LLC	541997.3
SIOUXLAND ENERGY & LIVESTOCK COOP	522150.6
BIG RIVER RESOURCES WEST BURLINGTON, LLC	506726.7
FLINT HILLS RESOURCES MENLO, LLC	442234.2
LINCOLNWAY ENERGY, LLC	431359.7
GOLDEN GRAIN ENERGY, LLC	427208
SOUTHWEST IOWA RENEWABLE ENERGY	382918.8
CORN, LP	377506.1
POET BIOREFINING - COON RAPIDS	367649.9
PLYMOUTH ENERGY, LLC	341642.8
VALERO RENEWABLE FUELS COMPANY, LLC	322641.4
ADM CORN PROCESSING	318312.9
FLINT HILLS RESOURCES SHELL ROCK, LLC	317859
GREEN PLAINS LAKOTA, LLC	305314.8
GREEN PLAINS SHENANDOAH, LLC	301579.6
FLINT HILLS RESOURCES FAIRBANK, LLC	293677.3
QUAD COUNTY CORN PROCESSORS	289015.2
POET BIOREFINING - EMMETSBURG	270898.7
POET BIOREFINING - CORNING	270428.3
LITTLE SIOUX CORN PROCESSORS, LLLP	266411.8
POET BIOREFINING - JEWELL	261087.4
FLINT HILLS RESOURCES IOWA FALLS, LLC	258365.4
THE ANDERSONS DENISON ETHANOL, LLC	252929.4
FLINT HILLS RESOURCES ARTHUR, LLC	250909.4
HOMELAND ENERGY SOLUTIONS, LLC	240349.1
VALERO RENEWABLE FUELS COMPANY, LLC	238871.4
VALERO RENEWABLE FUELS COMPANY, LLC	232445.7
POET BIOREFINING - ASHTON	232021.4
LOUIS DREYFUS COMMODITIES, GRAND JUNCTION, LLC	225485.5
PINE LAKE CORN PROCESSORS, L.P.	222865.1
POET BIOREFINING - HANLONTOWN	218867.9
GREEN PLAINS SUPERIOR, LLC	214851.4
ABSOLUTE ENERGY	209702
POET BIOREFINING - GOWRIE	160279.4
VALERO RENEWABLE FUELS COMPANY, LLC	150281.8

However, it's good news for the switch grass industry because they can come in and use idle/fallow land to supplement corn stover production and make some of these sites viable for cellulosic ethanol production. Now they know where their best bet for that is based on already available cellulosic corn

stover. This study was bound by Iowa State so there could be more competition just across the border that could affect these results. Another factor for people interested in revisiting this is the inclusion of corn crops in the surrounding states. It could increase the numbers for some of these peripheral plants. Also, if these ethanol plants were to collaborate, they could allow one plant the lion's share of an area for a certain fee and meet DuPont's criteria, but the plant that builds the cellulosic annex would most likely come out on top financially. That is why there is competition for the corn acreage.

